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ABSTRACT

In this work, a new, non-destructive method for obtaining stress-depth gradients in ferromag-

netic structures was developed, using the information contained within magnetic Barkhausen

emissions. A depth- and stress-dependent model for the frequency spectrum of Barkhausen

emissions was derived and �tted to measured data obtained from steel samples with controlled

stress-depth gradients. To achieve this, a library of signal processing and optimization algo-

rithms was developed, which allowed the analysis of large datasets. To obtain a calibration

reference for stress, a number of solid mechanics �nite element simulations were carried out.

Proof of concept is demonstrated by assuming linear stress-depth gradients and successfully

calculating the slopes of those, using a �tting algorithm.



www.manaraa.com

1

CHAPTER 1. AIMS OF THE PROJECT

The aims of this project are the following:

� To investigate the possibility of evaluating mechanical stress as a function of depth in

ferromagnetic materials using Barkhausen signals.

� To develop a stress dependent model of the Barkhausen e�ect.

� To formulate a parametric model that relates Barkhausen emissions at their point of origin

within the material to their attenuated form at the point of measurement.

� To provide an experimental methodology for conducting the proof of concept.
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CHAPTER 2. INTRODUCTION

2.1 Evaluation of residual stresses

Stress is de�ned as the force per unit area. Applied stress manifests when a component is

actively loaded, while residual stress is what remains when that loading is removed. Residual

stresses have a "balancing" e�ect, in the sense that they cancel out over the entire volume of

the material.

Consider the example of a shot peening process, where a metallic surface is blasted with

small ceramic pellets. Compressive stresses are formed on the surface, in what is essentially a

plastic deformation. In order to balance the forces within the entire volume of the specimen,

elastic tensile stress forms in the part below the compressed region. The expected stress-depth

pro�le is illustrated in Fig. 2.1a, while the measured stress-depth pro�les induced by shot

peening in two di�erent hard steels can be seen in Fig. 2.1b.

Residual stresses are typically classi�ed into three di�erent categories, which indicate the

length scales over which these stresses manifest. These categories are Type I, II and III [1],

and correspond to macro-, micro- 1 and atomic scale residual stresses, respectively. Type I

residual stresses, range in the order of millimeters; Type II residual stresses, range in the order

of micrometers; Type III residual stresses, range over atomic length scales. The present thesis

is addressing the upper end of Type II stresses overlapping with the lower end of the Type I

stresses.

A range of measurement techniques, both destructive and non-destructive, may be used to

quantify stresses in the aforementioned length scales. Fig. 2.2 provides a visual depiction of the

length scales that di�erent methods are suitable for.

1at the length scale of grains
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Figure 2.1: (a) Expected stress-depth pro�le due to shot peening (adapted from Handbook of

residual stress and deformation of steel, pg. 348 [1]) (b) Measured stress-depth pro�les induced by
shot-peening steels of two di�erent compositions [1]

Currently, x-ray di�raction is used in conjuction with electropolishing (for surface layer

removal) to assess the stress-depth pro�le of shot-peened components. The need to remove

surface layers is not there with magnetic techniques, which can be used to probe the near-surface

region nondestructively. A common technique within the realm of magnetic nondestructive

evaluation methods is Barkhausen noise. The next sections provide the de�nition of Barkhausen

noise, along with the theoretical models developed so far, and a overview of its usage in the

�eld of non-destructive evaluation of steels.
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2.2 Barkhausen noise

Barkhausen jumps are discontinuous, irreversible changes in magnetization. The voltage

induced in a coil due to these discontinuities appears as a noise signal, and is termed the

Barkhausen noise, after the discoverer, Heinrich Barkhausen, who noticed a crackling noise

while subjecting a ferromagnetic material to an applied �eld [3]. Over the years, studies have

shown that magnetic Barkhausen noise is a rather complex physical process [4, 5, 6, 7]. Its

manifestation varies depending on the type of ferromagnetic material, defect/inclusion sizes,

frequency of applied magnetic �eld, as well as thermal e�ects [8, 9]. The aim of this section is

to provide a description of the theoretical models that have been introduced over the years in

order to describe Barkhausen noise. It also aims to provide a summary of developments in the

context of non-destructive evaluation applications, particularly how measured signals contain

information about the stress state of a material.

2.2.1 Domain wall motion and Barkhausen noise

Theoretical models of Barkhausen noise are based on domain wall dynamics, and usually

attempt to describe a complex physical mechanism in one or two mathematical expressions.

This is by no means a trivial task, and all past attempts of modelling Barkhausen activity are

lacking in one way or another. Furthermore, Barkhausen activity contains a large stochastic

component, which creates ambiguity concerning the choice of statistics that need to be used in

describing the phenomenon. The physics community has shown great interest in Barkhausen

noise due to the fact that Barkhausen avalanches (successive Barkhausen jumps) are fractal

in nature and thus exhibit scale-invariance [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Despite

extensive studies that yielded complicated theories, little has been done towards practical ap-

plication. In the engineering world, although they are used in the non-destructive evaluation

industry, Barkhausen noise techniques still remain much the same after decades of use, as the

complexity of the phenomenon hinders understanding. This disconnect between the theoretical

and practical realms is what the present work attempts to bridge. The discussion begins with a

review of domain wall dynamics, progresses to a description of Barkhausen power spectra, and
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ends with a review of models of Barkhausen noise geared towards applications in the �eld of

non-destructive evaluation.

Chikazumi [20] invokes the expression for the coercive �eld that pins a domain wall, by

arguing that the domain wall motion is described by a second order di�erential equation [21] of

the form

mdw
d2x

dt2
+ η

dx

dt
+ λx = νH, (2.1)

which contains a velocity term dx/dt, that is dampened by a damping factor, η. In this expres-

sion, mdw is the e�ective mass of the domain walls, d2x/dt2 is the acceleration, and λ is the

restoring coe�cient that arises due to the internal potential. The force that arises due to the

applied �eld is νH. In the case of an equilibrium, or equivalently, steady-state condition, where

d2x/dt2 = 0, the velocity of the domain wall will be given by [7]:

v =
ν

η

(
H − λ

ν
x

)
, (2.2)

where the term λ
νx is equivalent to the local pinning �eld Hc. This equation indicates that as

the applied �eld is increased, the velocity of the domain wall progressively decreases, until it is

zero, when H = Hc. The domain wall will undergo acceleration and deceleration, depending

on the slope of the internal potential and the local demagnetising �eld. The internal potential

is linked to the pinning �eld, which is a function of the local pinning site density (dislocations,

vacancies, interstitials and regions of second phase material [7]) and is almost impossible to

accurately model. It can be approximated, however, by a sinusoidally varying function. This

is based on a calculated average over a �nite volumetric region, and it is a good illustration of

how the domain wall will reach equilibrium at the minima and maxima of the function.

The case of a magnetic thin �lm with cubic anisotropy incorporates both irreversible rotation

due to domain wall motion, as in the previous case, but also reversible motion due to domain

rotation, caused by anisotropic e�ects. The critical �eld at which a Barkhausen event would

happen, is calculated in terms of the anisotropy and spontaneous magnetization by the following

equation [7]:
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Hc ≈
2K

µ0Ms
sin(π/8) cos(π/4), (2.3)

where K is the anisotropy constant andMs is the saturation magnetization. There is a range of

critical �elds for which Barkhausen events will occur, since there will be domain walls aligned

along many di�erent easy axes relative to the direction of the applied �eld.

Domain wall translation, bending and rotation are processes that are a�ected by the �uc-

tuation of the internal potential seen by the domain walls. This �uctuation can be described

by stochastic equations. Similar to (2.2), Williams, Shockley and Kittel [22] derive that the

domain wall velocity is proportional to the the di�erence between internal magnetic �eld and

pinning �eld, as in

v = κ(H −Hc, ) (2.4)

where κ is the mobility of the domain walls, which is de�ned as the average velocity of the walls

per unit magnetic �eld strength, v = σGΦ̇, where σ is the conductivity, G is a geometrical

constant, and Φ̇ is the rate of change of �ux with time. The main contributors to H are the

applied �eld Ha and the local magnetostatic �elds. It is noteworthy that H is the total internal

�eld vector, which is the sum of an applied �eld component Ha and a demagnetising �eld Hd,

which arises due to the magnetostatic energy, and is of opposite sign to Ha, such that

H = Ha −Hd, (2.5)

where Hd = NdM , and Nd is a geometrical constant. The behaviour of Hc is stochastic, since

the interaction of the domain wall with inhomogeneities in the material is a random process.

The input of energy via the applied magnetic �eld causes the domain wall to move, if its absolute

value exceeds that of the local pinning �eld. The reciprocal of constant k is the mobility of

the domain wall, and has units of velocity per unit magnetic �eld. This equation is valid only

for planar, 180 domain wall motion. It is apparent that modelling domain wall motion is a

challenging task, due to the physical system's degree of complexity.
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Bertotti et al [5], based on the underlying theory of Williams, Shockley and Kittel, argue

that the pinning �eld is governed by the Ohrstein-Uhlenbeck process, quanti�ed by a Langevin

equation [23]:

dHp

dφ
+
Hp

ξ
=
dW

dφ
(2.6)

where W (φ) is the Wiener-Levy process, and its derivative, dW/dφ is the Gaussian white-

noise process. The pinning �eld Hp(φ) quanti�es the extent to which inhomogeneities in the

lattice pin the domain walls to energetically favourable positions 1. The correlation length ξ

quanti�es the range of interaction between the moving domain wall and the pinning sources.

The time-domain equivalent of (3.11) is [23]

dHp

dt
+
Hp

τc
=
dW

dt
(2.7)

where τc = ξ/(dφ/dt). The above formulations were followed by a description of the Barkhausen

noise power spectrum, which has the form [4]

F (ω) = 4Sİ
A

(σG)2

ω2

(ω2 + τ−2)(ω2 + τ−2
c )

. (2.8)

The normalised power spectrum was plotted for di�erent magnetization rates (Fig. 2.3).

Sablik [25], based on the stochastic model of Alessandro et al., derives the Barkhausen

noise power maximum as a function of magnetising �eld rate. This study is constrained to a

magnetizing �eld with a constant time derivative, that being a ramp waveform. The power

maximum is plotted for a range of �eld ramp rates dH/dt. The trend exhibits a non-linear

relationship (Fig. 2.4).

1This model equation applies only to regions of the hysteresis loop where the measured di�erential perme-

ability µ′rmeas
can be approximated to be constant, and for µ′rmeas

� 1. This condition holds true for small

deviations of µ0M = I around the coercive point Hc. The reason for constraining the model around a region of

constant permeability is that there, the Barkhausen e�ect is fairly stationary, in contrast to regions of non-linear

permeability, where it is non-stationary [24]. That is because when M ≈ 0, domain wall motion is the gov-

erning mechanism, which is relatively well-de�ned. When M saturates, domain wall creation and annihilation

dominate, those being processes that are more complicated to describe.
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Figure 2.3: Normalised Barkhausen Noise power spectrum [4]. Dotted lines represent computer
simulations, while solid lines represent experiment. The experiments were conducted for three
di�erent values of İ, with 1 having the highest value, and 2 the lowest.

Sipahi and Jiles [26], recognized the limitation of Bertotti's approach, and formulated a

model that took into account the regions of variable di�erential permeability, by using the Jiles-

Atherton theory of ferromagnetic hysteresis. In their experiments, they measured the count

rate N (number of Barkhausen pulses per magnetizing cycle) as well as the root mean square

Barkhausen voltage. One of the key model equations [7], which quanti�es the instantaneous

Barkhausen voltage VB in terms of N and dH/dt is

VB = −µ0nA

(
Nd〈Mdisc〉
dMirr

+ 〈Mdisc〉
dN

dMirr

)
dMirr

dH

dH

dt
, (2.9)

and implies that the voltage is linearly dependent on the magnetizing rate. The term d
dMirr

(N〈Mdisc〉)

is de�ned as γ. This proportionality constant appears in the expression for the Barkhausen jump

sum MJS . MJS quanti�es the Barkhausen activity, since it is the product of number of events

N and average event size 〈Mdisc〉. These two quantities can be determined stochastically from

Bertotti's model, while dB/dt is controlled, and dMirr/dt is measured from the hysteresis curve.

Under certain conditions, N follows a Poisson distribution. In this theory, the number of events

in the present time period a�ect the number of events in the next time period, as in
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Figure 2.4: Barkhausen Noise power maximum vs. �eld ramp rate [25].

Nt = Nt−1 + δrand
√
Nt−1. (2.10)

where δrand is a random number that lies within a speci�c range. The model equation becomes

MJS(tn) = Mdiscχ
′
irrH[N ′(tn−1 + δ

√
N ′(tn−1)] (2.11)

Model results were plotted both for zero stress case (Fig. 2.5), tension and compression.
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Figure 2.5: Results from the model for the Barkhausen signal in the zero stress case [27].
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Some time later, Clatterbuck et. al [28] extended Bertotti's model itself to incorporate

hysteresis e�ects via implementation of the Jiles-Atherton model. The resulting equation was

dİirr
dt

+
İirr − χ′irrḢa

τ
= −χ

′
irr

τ

dHc

dt
. (2.12)

Here, the Barkhausen emission signal voltage is expressed in terms of Iirr rather than Φ. Also,

χ′irr and Ha are functions of time, not constant,as in the original model. Also, the location on

the hysteresis curve and the magnetization history both a�ect the value of τ . This modi�cation

permits calculation of the Barkhausen signal as a function of stress, frequency and amplitude

of applied �eld.

Sakamoto et al. [6] argued that the RMS voltage induced by a single Barkhausen jump

can be modelled as a Gaussian pulse of standard deviation σ, with the reason for choosing a

Gaussian shape being the facilitation of mathematical treatment, and not on the grounds of a

physical explanation. The expression for a Gaussian pulse at time t is

V (t) =
∆Φ√
2πσ

exp(−(t− t0)2/2σ2), (2.13)

where ∆Φ is the magnitude of the �ux change and at t0 the gaussian pulse holds a maximum

value. These individual RMS pulses can be summed up to give the total induced voltage in a

pick up coil.

2.2.2 Determination of residual stress from Barkhausen measurements

Magnetic Barkhausen noise is able to provide information about the microstructure of a

ferromagnetic material. That is the reason for which it has been extensively used in the non-

destructive evaluation of steel components; early diagnosis of fatigue due to time varying me-

chanical stress is the best way to prevent catastrophic failures. The magnetic Barkhausen noise

technique has been proven useful in cases where in-service evaluation of components is required,

particularly of the surface and sub-surface conditions. Applied stress as well as residual stress

can be evaluated. It has also been shown that the Barkhausen emission is a�ected by hardness
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as well as grinding burns [29], and that through the analysis of the Barkhausen signals, one can

distinguish between microstructures, such as pearlitic and bainitic [30].

As discussed previously in this literature review, the nature of Barkhausen emissions is

stochastic. Bulk relationships, however, can be deduced by a set of relatively straightfor-

ward experiments. Through similar experiments, various authors have plotted applied stress

to Barkhausen signal envelope peak [31] also Barkhausen signal envelope RMS value [32] [33],

[34], as well as count rate [34].

Figure 2.6: RMS Barkhausen noise voltage vs. stress [33].

By applying stress within the elastic limit of a semicircular half section of a 9.5 mm thick

pipe, Jagadish et al. [33] were able to plot stress vs. the surface Barkhausen noise peak value.

In the same study, power spectral and pulse height analyses were also conducted, for both

compressive and tensile values of stress. It was found that the number of pulses increased with

tensile stress and decreased with compressive stress (Fig. 2.6). This result agrees with Jiles et al.

[31] , who plotted the relationship between signal envelope peak Mmax and compressive stress,

�nding that the former decreased with increasing compressive stress (Fig. 2.7). The conclusion

of this study was that in the case of materials with positive magnetostriction, the Barkhausen

signal envelope peak decreases with compression along the direction of the magnetic �eld and

increases with tension along the direction of the magnetic �eld. Very similar results with the

same qualitative explanation were given by Krause et al [35]. Jagadish et al. [33] further

observed that stress also a�ects the pulse height distribution, with the observation being that



www.manaraa.com

14

the application of tensile stress causes individual Barkhausen events of higher amplitude, while

compressive stress gives rise to events of lessened amplitude.

Figure 2.7: Barkhausen signal envelope peak Mmax vs. average compressive stress 〈σ〉100 in a
surface layer [31].

This observation can be explained qualitatively in terms of the magnetoelastic e�ect. Ap-

plied stress induces stress anisotropy, altering the magnetic permeability. Also, the addition

of elastic energy to the lattice facilitates domain wall nucleation, leading to higher number of

Barkhausen events in materials with positive magnetostriction. The converse happens in the

case of compressive stress.

The previous description is based on the theory of the magnetomechanical e�ect, which

argues that an externally applied stress contributes to the anisotropy energy of the lattice.

According to Sablik et al. [36], an applied stress σ can be considered as an equivalent magnetic

�eld Hσ which acts through the magnetostriction λs:

Hσ =
3

2

σ

µ0

(
∂λ

∂M

)
T

(2.14)

And as a function of angle θ, which is the angle between the direction of stress σ and the

direction in which Hσ is measured [37]:

Hσ =
3

2

σ

µ0

(
∂λ

∂M

)
T

(cos2 θ − ν sin2 θ) (2.15)
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At low �elds, one can yield the expression for the total �eld. It is a sum of the magnetic �eld,

the exchange �eld, and the stress-equivalent �eld stated above [38]:

He = H + αM +Hσ = H + αM +
3bσ

µ0
M(cos2 θ − ν sin2 θ) (2.16)

The anhysteretic magnetization can have the form of a Langevin function, which can incorporate

the stress-equivalent �eld Hσ [38]:

Man(H,σ) = Ms

[
coth

(
H +Hσ + αM

α

)
− α

H +Hσ + αM

]
(2.17)

Mierczak and Jiles [39] recently used the above magnetomechanical relationship to explain a

result that relates the reciprocal maximum di�erential susceptibility at the coercive point, to the

reciprocal of the peak Barkhausen Noise amplitude. More speci�cally, for low �eld amplitudes

where the magnetostriction curve is symmetric the di�erential susceptibility at the origin of the

magnetization curve can be expressed as [40]

1

χ′max(0)
− 1

χ′max(σ)
=

3bσ

µ0
. (2.18)

Their experimental results (Fig. 2.8) indicated that a relationship of the following form is valid,

where b′ absorbs the constant of proportionality between χ′ and Vmeas:

1

Vmeas(0)
− 1

Vmeas(σ)
=

3b′σ

µ0
. (2.19)

where VMBN is the peak Barkhausen noise amplitude. This study establishes a linear relation-

ship between the reciprocal of the peak Barkhausen voltage and stress (Fig. 2.8). The constant

b′ can only be determined empirically as it is a complicated function of magnetizing frequency

and detection frequency.
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Figure 2.8: Experimental results showing the linear relationship between the reciprocal of the
peak Barkhausen Noise voltage and stress [39].
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CHAPTER 3. THEORETICAL ANALYSIS AND PRELIMINARY

RESULTS

3.1 Stress as an e�ective magnetic �eld

In the elastic region, a constant applied stress can be represented as an additional magnetic

�eld term Hσ, which is a function of the magnetoelastic energy Eσ and the magnetization M ,

such that [41]:

Hσ =
1

µ0

∂Eσ
∂M

, (3.1)

Assuming there are no transverse strains, and assuming the magnetostriction is isotropic, the

magnetoelastic energy due to stress has the form [41]

Eσ =
3

2
λσ cos2 φ, (3.2)

where λ is the magnetostriction and φ is the angle between the direction of magnetization and

the direction of applied stress. The magnetostriction can be expanded into the form λ ≈ bM2,

ignoring higher and lower order terms. This implies that the initial region of the λ−M curve

can be approximated as parabolic, with b de�ned as a second-order coe�cient. In general, low

carbon steels exhibit low magnetocrystalline anisotropy such that in the presence of applied

stress, the stress induced anisotropy dominates. When the �eld is applied along the direction

of stress and assuming that stress is not a function of magnetization, (3.1) reduces to

Hσ =
3bσM

µ0
(3.3)

where σ is the stress amplitude. The magnetization M is, in strict terms, also a function of

stress. However, at relatively small applied stresses and �elds, its dependence on stress can
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be neglected, such that ∂σ/∂M = 0. Under the above conditions, it can be seen that the

stress-equivalent �eld Hσ experienced by domains varies linearly with stress.

This e�ective �eld term for stress Hσ can then be inserted into the equation for the anhys-

teretic magnetization Man:

Man(H)

Ms
= coth

(
Happ + αMan +Hσ

a

)
− a

Happ + αMan +Hσ
(3.4)

whereMs is the saturation magnetization, Happ is the applied �eld, α is the mean �eld coupling

term, and a is a term that quanti�es domain wall density in the material. It is possible to use

the Taylor series expansion of coth(x) at x = 0 to simplify the problem:

coth(x) ≈ x−1 +
1

3
x− . . . (3.5)

which leads to

Man(H) =
Ms

(
Happ + αMan + 3bσ

µ0
Ms

)
3a

(3.6)

3.2 Variation of di�erential susceptibility and Barkhausen voltage with

stress

From the expression of 3.6, Garikepati et. al [42] derived an equation for the anhysteretic

di�erential susceptibility at the origin χ′an(σ)|H=0:

χ′an(σ)|H=0 =
Ms

3a−
(
α+ 3bσ

µ0

)
Ms

(3.7)

where Ms is the saturation magnetization, α is the coupling coe�cient that quanti�es the

strength of interaction between neighbouring domains, b is a magnetostrictive coe�cient that

can be determined experimentally, µ0 is the permeability of free space, and σ is the stress. This

expression can be rearranged as

1

χ′an(0)|H=0
− 1

χ′an(σ)|H=0
=

3bσ

µ0
(3.8)
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Likewise, at the coercive point χ′max ' χ′an so that there is a simple relationship between the

peak slope of the magnetization curve and stress:

1

χ′max(0)
− 1

χ′max(σ)
=

3bσ

µ0
(3.9)

In previous work [39], the voltage peak envelope amplitude, VMBN,peak, was observed to follow

a similar trend as χ′max with stress, and thus (3.9) was modi�ed to give

1

VMBN,peak(0)
− 1

VMBN,peak(σ)
=

3b′σ

µ0
(3.10)

where b′ is a scaled version of b found in (3.9).

However, since the Barkhausen signal contains stochastic components, the parameter b′ seen

in (3.10) which is proportional to the slope of the line, can only be determined experimentally.

Qualitatively, it will depend on the magnetizing frequency and amplitude of the magnetizing

�eld.

It should be noted that the linear relationship that can be established in the low-�eld,

low-stress region, does not hold as the magnitude of stress is increased past the yield point of

the material. At the onset of plastic deformation, slip processes form dislocations in the crystal

lattice. These, in turn inhibit domain wall motion by increasing the e�ective �eld that is needed

for domain walls to escape local energy minima thus invalidating the assumption that the stress-

induced anisotropy dominates. Thus, in the plastic region the relationship given in (3.10) may

not hold. Nevertheless, for the purpose of this study which focuses on the elastic region, the

relationship is realistic as the results show. Furthermore, the results of Garikepati et. al [42]

experimentally verify that the linear relationship between the reciprocal of the anhysteretic

susceptibility at the origin and stress also holds for compressive stress. It is therefore expected

that a linear relationship between the reciprocal of the Barkhausen voltage and compressive

stress should also hold. However, compressive and plastic stress is outside the scope of the

present thesis.
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3.3 Stochasticity in Barkhausen noise

In a specimen of ferromagnetic material that is magnetised by an applied �eld, magnetic

avalanches of various durations occur at many di�erent depths simultaneously. The stochastic

process that governs these discontinuous changes in magnetisation is the Ohrstein-Uhlenbeck

process, quanti�ed by a Langevin equation [23]:

dHp

dφ
+
Hp

ξ
=
dW

dφ
(3.11)

where W (φ) is the Wiener-Levy process, and its derivative, dW/dφ is the Gaussian white-noise

process. The pinning �eld Hp(φ) quanti�es the extent to which inhomogeneities in the lattice

pin the domain walls to energetically favourable positions. The correlation length ξ quanti�es

the range of interaction between the moving domain wall and the pinning sources. The time-

domain equivalent of (3.11) is [23]

dHp

dt
+
Hp

τc
=
dW

dt
(3.12)

where τc = ξ/(dφ/dt).

At high magnetization rates (typically ≥ 100 Hz), τc becomes small, such that Hp ≈ dW/dt.

This implies that at high magnetization rates the pinning �eld, and consequently the domain

wall velocity are governed by a white-noise process. To further clarify what is meant by high

magnetization rates, the dimensionless parameter [23] c = τf is invoked, where τ = GSµirr/ρ

and f is the frequency of the applied �eld. G is a constant equal to 0.1356, S is the cross-

sectional area being magnetized, µirr is the irreversible large-scale permeability and ρ is the

electrical resistivity of the specimen. The cross-sectional area can be approximated as S = δw,

where δ =
√
ρ/(πfµirr) and is the penetration depth at a certain applied �eld frequency, and

w is the width of the section. By substitution, we get

c =

√
µirrf

πρ
Gd, (3.13)

which for a typical steel resistivity ρ = 2.2 × 10−7 Ωm, quasi-static permeability µirr = 60,

d = 10 mm and f = 100 Hz, yields c ∼= 0.8 × 10−3. In the limit c = 0 and for low applied
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�eld rates [17] (typically in the order of 0.05 Hz) , the power spectrum of Barkhausen emissions

resembles that of Brownian noise (with P (ω) ∼ ω−2), while for c > 0, and for higher applied

�eld rates (typically ∼ 100 − 1000 Hz) the power spectrum at the origin of emissions �attens

out, and begins to resemble a white noise power spectrum.

The resulting electromagnetic emissions, which diverge outwards from the origin of local

magnetisation changes, will have the same statistical properties. This allows us to express

the Barkhausen signal at the origin V (t) as Gaussian white noise of zero mean (the voltage is

centered around zero) and variance (the voltage excursion around the mean) σ2 1:

V (t) ∼ N(0, σ2). (3.14)

For steels, the addition of magnetoelastic energy due to stress causes the nucleation of 180 degree

domain walls in the direction of applied stress [43]. In materials with positive magnetostriction,

an increase in the number of pinned domain walls (caused by elastic stress) leads to an increase

in the variance of the noise, owing to the larger number of Barkhausen events occurring on

a given time instant. The mean remains at zero, since the net magnetization increase in the

specimen is ignored.

1In Chapter 5 it is shown how the variance mathematically resembles the R.M.S. of the signal.
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3.3.1 Various forms of �eld H

In ferromagnetic materials the degree of coupling between neighbouring domains is quan-

ti�ed by the mean �eld coupling coe�cient α. The energy stored between N neighbouring

domains with magnetisation m is given by

E = −m · µ0αNm, (3.15)

where µ0 is the permeability of free space. To model inhomogeneities that impede the domain

boundary as it moves, a stochastic pinning �eld Hi ∼ N(0, σ2) is introduced, such that the

energy stored between the domain and the pinning �eld is

E = −µ0m ·Hi. (3.16)

Finally, the magnetostatic energy in the applied �eld Ha is represented by

E = −µ0m ·Ha, (3.17)

to yield an expression for the total energy of

E = −µ0m ·Ha −m · µ0αNm− µ0m ·Hi, (3.18)

where the �rst, second and third terms represent the magnetostatic (also known as Zeeman),

coupling and pinning energies, respectively. Hysteretic behaviour increases with α, due to the

increased coupling between adjacent domains. This is analogous to the snapping mechanism

in brittle materials, in that a single domain wall displacement instigates a large avalanche. In

models of ferromagnetic hysteresis, a high value for α is associated with increased switching

behaviour, and high permeabilities at the coercive point, a characteristic of hard ferromagnets.

Soft ferromagnets, on the contrary, exhibit lower values of permeability at the coercive point,

caused by a smaller exchange coupling.

In the presence of dislocations (which may have similar e�ect on a propagating domain

as impurities) caused by lattice straining, domain coupling decreases even further, making the
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contribution of α small enough for the stochastic pinning �eld term to dominate. Since all other

energy terms remain invariant, the free energy term in (3.18) can be expressed as

∆E = −µ0m ·Hi. (3.19)

Thus, under high applied stresses, the dominating mechanism is Hi, which can be modeled as

white noise with frequency spectrum ranging from∼ 20 kHz (approximate lower cuto� frequency

of Barkhausen spectrum) to ∼ 1.25 MHz (upper cuto� imposed by measurement system used

in this work).
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3.4 Barkhausen noise in the frequency domain

To examine how the emissions attenuate as they propagate through the material, we take

the Fourier transform of the signal V (t) at the origin. It has been shown previously that the

Fourier transform of Gaussian, uncorrelated white noise will have a magnitude that follows the

Rayleigh distribution [44]. For mathematical tractability and clarity, we only consider the mean

magnitude of the Fourier transform 〈V 〉, which is proportional to the standard deviation of the

noise. As the emissions propagate, attenuation as a function of frequency causes the higher

frequency components to dissipate faster (Fig. 3.1), with the rate of attenuation assumed to be

exponential, such that the measured frequency spectrum at the surface, due to one emission,

becomes

Vmeas(ω) = 〈Vorig〉eiφe−γ(ω)x, (3.20)

Figure 3.1: E�ect of eddy current damping on the Barkhausen spectrum. In our model,
Barkhausen emissions occuring at an in�nitesimally thin region inside a specimen, have a white
noise frequency spectrum. The energy in emissions is dissipated due to generation of eddy currents,
causing the spectrum to resemble pink noise as the Barkhausen emissions propagate through the
material.

where 〈V 〉 is the expected magnitude of the Fourier transform at the origin, φ is the phase of

the emission at the point of origin, x is the distance from the surface to the point of origin

of the emission, and γ(ω) = α(ω) + iβ(ω) is the propagation constant, a function of angular

frequency ω. Equation (3.20) describes the propagation of a plane wave in an electrically

conductive medium; the sensor measures the perpendicular component of the �ux density, with

unit vector x̂ normal to the surface. The coe�cient α(ω) quanti�es the rate of attenuation
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(in Np/m), while β(ω) is the phase constant (in rad/m) and de�nes the rate of phase change

as the wave propagates. In conductors, α = β =
√
ωµe�/2ρ, where µe� and ρ represent

the e�ective magnetic permeability (here we de�ne the e�ective magnetic permeability as the

e�ective permeability of the magnetic circuit, which includes the test specimen and sensor

apparatus) and the electrical resistivity, respectively. For mathematical tractability, we only

consider the magnitude of the term e−γ(ω)x in (3.20), and we take the mean of the phase

at the origin (the phase of the Fourier transform of uncorrelated Gaussian noise is uniformly

distributed between −π and π, with a mean of zero). We can then write the attenuated

amplitude of emission as

Vmeas(ω) = 〈Vorig〉e−α(ω)x. (3.21)

We assume that the variation of electrical resistivity ρ with stress is negligible, thus we only

consider µe� and 〈V 〉 to be functions of stress. Barkhausen jumps occur everywhere inside the

specimen, and every depth x is the point of origin of a Barkhausen spectrum, of the form (3.21).

It should be mentioned here that in the following sections, 〈Vorig〉 will be denoted as Vorig.
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3.5 Initial approach to separating emissions from di�erent depths

The time domain approach where simple time-domain statistics are extracted from the raw

measured voltage, is limited. This is due to the fact that these time-domain statistics represent

the bulk emission from the material and not speci�c volumetric regions within it.

The idea of this approach is to transform the measured signal into the frequency domain,

remove certain spectral regions through �ltering, and revert back to the time domain signal,

where certain time domain statistics can be extracted. More speci�cally, an electromagnetic

emission of the type described in (3.21) will be attenuated to 1/e of its amplitude at the origin

as it travels a distance δ = 1/α, due to eddy current dissipation. It should then be possible to

de�ne a "cuto�" distance at which an emission of a certain frequency is assumed to attenuate

to zero. To simplify the analysis, it is assumed that each Barkhausen burst is a Dirac delta

pulse in the time domain, which in the frequency domain translates to a �at spectrum, like

white noise. It is important to note, however, that each frequency component within the burst

propagates with its own attenuation constant.

In order to graphically describe the model, an illustration of the solution of the model

equations is presented in Fig. 3.2. Consider two di�erent emissions of frequency fa = 0.5 MHz

and fb = 0.1 MHz (frequencies present in a typical Barkhausen noise spectrum), which occur

at depth xa and xb inside a specimen of constant electrical permeability and constant electrical

conductivity. The emission of frequency fa will travel a distance δa before being attenuated to

1/e of its initial amplitude. Its skin depth lies between depths x0 and x1, hence emission fa is

considered to be present in a Barkhausen measurement band-passed from ω0 to ω1. Assuming

for the purposes of the analysis that complete attenuation occurs over a propagation depth δ,

the emission of frequency fb will not be present in that measurement. However the emission at

frequency fb will be present in a measurement band-passed from ω0 to ω2.

For a given frequency, emissions originating from regions deeper in the material will arrive

at the surface more attenuated than emissions originating from shallower regions. Consequently

emissions of relatively high frequency, originating from deep regions of the specimen, do not

reach the surface. Hence, it is possible to identify the depth of emission by de�ning cut-o�
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Figure 3.2: Emissions of frequency fa = 0.5 MHz and fb = 0.1 MHz originating at depths xa and
xb inside a material of constant permeability and conductivity. Attenuation occurs due to the skin
e�ect described in equation (3.21). The model assumes a sharp cuto� at δ, which allows setting
cuto� depths to facilitate the separation of emissions. As long as the skin depth of an emission falls
between the upper and lower cuto�s of a layer, it is detected within that layer. Attenuation of the
amplitude of emissions is represented by fading colour.

frequencies for a measurement, which correspond to particular depths. Barkhausen emissions

occur at all depths and over a range of di�erent frequencies, and therefore emissions at frequency

fb can also originate in the region between x0 and x1. Hence, an emission measured at the surface

will therefore be a superposition of many di�erent emissions of the same frequency originating

at di�erent depths. As a result, to distinguish between the emissions at di�erent depths and

construct a stress pro�le, equation (3.21) alone is not su�cient.

The basic model developed here considers two consecutive layers which have di�erent values

of stress. In each of these layers stress is considered to be homogeneous. Barkhausen measure-

ments at the surface are band-pass �ltered to retrieve two ranges of signals; one from ω0 to ω1,

representing emissions from the �rst layer, and one from ω0 to ω2 (where ω2 is smaller than ω1),

representing emissions from the combined �rst and second layers. Provided the absolute value

of stress in the �rst layer is known, a set of model equations is used to calculate the stress in the

second layer. The signal coming from consecutive layers is found by varying the low frequency

cut-o� ω2 and repeating the procedure. The following sections describe the model equations
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which apply to a single uniformly stressed layer of material and two uniformly stressed layers of

material. For the sake of clarity, it is important to note that the objective of this methodology

is to remove the low frequency part of the emission spectrum originating in the surface layer.

3.5.1 Magnetic Barkhausen emissions from a single, uniformly stressed layer

Consider a ferromagnetic slab of �nite thickness, relative magnetic permeability µr and elec-

trical conductivity σ as schematically shown in Fig. 3.3. If Barkhausen emissions of frequency

ω0 to ω1 occur from depth x0 to depth x1 into the specimen, and assuming plane wave propa-

gation as well as a white noise spectrum the voltage that is induced in a sense coil located at

the surface can be expressed as in equation (3.22) [45, 46]:

Vmeas(x0, x1, ω0, ω1) =

∫ ω0

ω1

∫ x1

x0

Vorig1e
−ζx
√
ωdxdω

= Vorig1 f(x0, x1, ω0, ω1) (3.22)

where ζ = (2ρ/µ0µr)
1/2 and Vorig1 is a constant. The function f(x0, x1, ω0, ω1) is a generalized

attenuation function, the ratio of total measured Barkhausen voltage at the surface to the

Barkhausen voltage at the point of origin. It is given by

f(x0, x1, ω0, ω1) =
2

ζ2

[
1

x1

(
e−ζx1

√
ω0 − e−ζx1

√
ω1

)
− 1

x0

(
e−ζx0

√
ω0 − e−ζx0

√
ω1

)]
(3.23)

In the limiting case where x0 = 0 and emissions from the surface to x1 are considered, the

attenuation function becomes

f(0, x1, ω0, ω1) =
2

x1ζ2

[
(e−x1ζ

√
ω0 − e−x1ζ

√
ω1

+ x1ζ(
√
ω0 −

√
ω1)

]
(3.24)

The above expression is experimentally veri�able when x1 is equal to the slab thickness. That

is, when emissions from all depths are taken into account. In general, when the slab thickness



www.manaraa.com

29

Figure 3.3: Layered specimen considered by the model, where layer boundaries correspond to
speci�c frequencies. Stress is denoted by σ.

is greater than x1 the measured signal at the surface will not only represent the emissions

occurring within the interval 0 to x1 but also emissions in the same frequency range originating

at depths beyond x1.

Fig. 3.4 is a plot of the voltage given by equation (3.24), where µr = 50, ρ = 8.93 × 10−8

Ω/m and Vorig = 2 µV. In other words, the average Barkhausen emission in the specimen

induces a voltage of 2 µV in its immediate vicinity. During its propagation towards the surface,

the induced voltage is attenuated exponentially as determined by the term ζ. For this plot,

x1 = 100 µm, which is also the thickness of the specimen. The frequency cut-o�s ω0/2π and

ω1/2π are each varied from 30 kHz to 1 MHz, which correspond to penetration depths δ of ∼ 122

µm and ∼ 21 µm for a material of the given resistivity and permeability. Having established a

constant thickness and varying the frequency limits ω0 and ω1, a non-linear trend is apparent.

Fig. 3.5 is a contour plot of the measured voltage from one layer, plotted as a function of

the two cuto� frequencies. It can be seen that the peak voltage is ∼ 400 µV . Since ω1 and ω0

were de�ned as the lower and upper cuto� frequencies respectively, values of Vmeas for which

ω1 > ω0 can be ignored for the purposes of this model. Hence, they were omitted from both

plots.
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Figure 3.4: Measured voltage from one layer plotted as a function of frequencies ω0 (upper cuto�)
and ω1 (lower cuto�). For this study, ρ = 8.93 × 10−8 Ω/m, µr = 50 and Vorig = 2µV . Depth x1
was set to 100 µm. Note that when ω1 > ω0, there is no detected voltage.

3.5.2 Magnetic Barkhausen emissions from a combination of two uniformly stressed

layers

In order to produce a stress depth pro�le where stress takes on di�erent values with depth,

it is necessary to consider the test specimen divided into more than one region, as would

be practically expected. A second layer which extends deeper into the specimen has to be

considered. However, if the average stresses in the �rst and second layer are di�erent, the

Barkhausen emission amplitudes at their origin will also be di�erent. Then this can be used to

determine the di�erence in stress between the two layers if it is possible to distinguish between

emissions from di�erent depths (Fig. 3.6).

Consequently, Vorig1 and Vorig2 are de�ned as the amplitude of emission at the origin for

the �rst and second layer respectively. The expression that takes into account emissions from

both is equation (3.25) [46]
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Figure 3.5: Contour plot of the measured voltage from one layer, as a function of frequencies ω0

(upper cuto�) and ω1 (lower cuto�). Voltage values are expressed in µV. Note that when ω1 > ω0,
there is no detected voltage.

Vmeas(0, x1, x2, ω0, ω1, ω2) =

Vmeas(0, x1, ω0, ω2)

(
1 +

f(0, x1, ω1, ω2)

f(0, x1, ω0, ω1)

)
+ Vorig2 f(x1, x2, ω1, ω2) (3.25)

The �rst term on the right hand side contains the attenuation ratio f(0, x1, ω1, ω2)/f(0, x1, ω0, ω1)

which normalizes for emissions in the ω2, ω1 range coming from the �rst layer. The second term

contains the quantity of interest, Vorig2 (from which the stress in the second layer can be deter-

mined) multiplied by the attenuation function.

To examine the e�ect of varying Vorig1 relative to Vorig2, equation (3.25) was plotted for

Vorig1 at 1, 2, 3 and 4 µV, while keeping Vorig2 constant at 2 µV. In Fig. 3.7 the measured

voltage is plotted as a function of ω2, with ω1 = 0.5 MHz and ω0 = 1 MHz being held constant.

Fig. 3.7 shows that as the value of Vorig1 is increased, there is a corresponding increase in the

peak value of the measured voltage. It can be seen that when Vorig1 = Vorig2 = 2 µV, the peak

voltage is ∼ 400 µV.
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Figure 3.6: Layered specimen considered by the model, where layer boundaries correspond to
speci�c frequencies. Stresses in the �rst and second layer are denoted by σ1 and σ2 respectively.

In Fig. 3.8, the measured voltage is plotted as a function of ω2 and ω1. Having set ω0 = 1

MHz, and both Vorig1 and Vorig2 at 2 µV, it can be seen that the e�ect of varying ω1 is not

signi�cant and can be ignored in this case. Again, values of Vmeas that do not satisfy the

condition ω2 < ω1 can be ignored, so they were omitted in both plots.

It can be seen that the measured voltage increases as the frequency span increases, for both

the one- and the two layer cases. In particular, the peak voltage reaches ∼ 400 µV, for a

specimen of 100 µm thickness, µr = 50, ρ = 8.93 × 10−8 Ω/m, having considered emissions of

a frequency range of 30 kHz to 1 MHz. Comparison of the peak voltages of Fig. 3.5 and Fig.

3.7 yields the observation that when Vorig1 = Vorig2 = 2 µV, and the upper and lower cut-o�

frequencies and depths are identical, the structure can be considered as only consisting of one

layer with Vorig2 = 2 µV. This result can be further generalized to arrive to the conclusion

that when emission amplitudes at the origin of di�erent consecutive layers are identical and the

cuto� frequencies are identical, the structure can then be approximated as having a single layer.

Fig. 3.9 illustrates the concept of a layered specimen, and how sampling di�erent parts of

the Barkhausen frequency spectrum translates into sampling di�erent depth ranges.
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Figure 3.7: Measured voltage from two layers plotted as a function of the lower cuto� frequency
ω2 . In this plot, ω0/2π = 1 MHz, ω1/2π = 0.5 MHz and Vorig2 = 2 µV. The value of Vorig1 was set
to (a) 1 µV, (b) 2 µV, (c) 3 µV and (d) 4 µV. The depths were �xed to x1 = 50 µm and x2 = 100
µm.
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Figure 3.8: Measured voltage from two layers plotted as a function of frequencies ω1 (intermediate
cuto�) and ω2 (lower cuto�). In this plot, ω0/2π = 1 MHz, Vorig1 = Vorig2 = 2 µV. The depths
were �xed to x1 = 50 µm and x2 = 100 µm.Note that when ω1 < ω2, there is no detected voltage.
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3.5.3 Solving for the voltages at the origin of emission

To determine stress it is necessary to determine the Barkhausen voltage at the point of origin

of the emission. Both Vmeas(0, x1, ω0, ω1) and Vmeas(0, x1, x2, ω0, ω1, ω2) are experimentally

measurable quantities, which correspond to two �ltered versions of the measured Barkhausen

signal, one band-passed from ω0 to ω1 and the other band-passed from ω0 to ω2, as seen in

Fig. 3.9. However, the voltage emanating from the second layer cannot be directly measured

because emissions of the same frequency may occur in di�erent depths, making it impossible

to identify the depth of emission simply by �ltering the measured signal. Nevertheless, the

value of Vorig2 can be calculated by subtracting a normalized version of the �rst layer voltage

Vmeas(0, x1, ω0, ω1) from the combined layer voltage Vmeas(0, x1, x2, ω0, ω1, ω2) and by solving

for Vorig2.

The depth-pro�ling model considers complete attenuation at the skin depth, such that when

the lower cuto� frequency is decreased, more material volume is sampled and more Barkhausen

emissions are taken into account. The voltage of a single Barkhausen emission Vorig1 can be

solved for by rearranging (3.22), such that:

Vorig1 =
Vmeas(0, x1, ω0, ω1)

f(0, x1, ω0, ω1)
. (3.26)

Similarly, (3.25) can be rearranged to yield the average amplitude of a Barkhausen emission in

the second layer Vorig2, such that

Vorig2 =
1

f(x1, x2, ω1, ω2)

(
Vmeas(0, x1, x2, ω0, ω1, ω2)

− Vmeas(0, x1, ω0, ω1)

(
1 +

f(0, x1, ω1, ω2)

f(0, x1, ω0, ω1)

))
(3.27)

Once the probing depths and corresponding frequencies are calculated, the attenuation functions

can be evaluated, and Vmeas(0, x1, ω0, ω1) as well as Vmeas(0, x1, x2, ω0, ω1, ω2) can be obtained

by �ltering the original Barkhausen signal accordingly. Thus, Vorig1 and Vorig2 can be obtained

by applying (3.26) and (3.27) respectively. These two separate quantities correspond to the �rst

and second layer in the specimen.
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Figure 3.9: (a) Typical measured Barkhausen noise spectrum, with ω0, ω1, ω2, denoting the
upper, intermediate and lower cuto� frequencies - these correspond to di�erent depths of sampling
(frequencies not to scale). The ω2 limit can be lowered to ω′2 in order to sample deeper regions
of the specimen. (b) Ferromagnetic specimen divided in three layers of equal volume, where σ1,
σ2 and σ3 denote the stress magnitudes in the �rst, second and third layer respectively. Also
σ̄2−3 = 1

2 (σ2 + σ3).
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In order to create a calibration pro�le it is necessary to start with an unstressed specimen

of the material under examination. This will serve as a reference, for which the stress-voltage

relationship at di�erent depths can be determined. By applying a uniform uniaxial tensile

stress, measuring the amplitude of Barkhausen emissions, and using (3.26) and (3.27), 1/Vorig

corresponding to each depth range can be plotted versus stress. It is expected that since the

stress in the reference specimen is uniform, Vorig1 = Vorig2 = Vorig2−n. This will be true provided

that the model assumptions are correct, namely that the Barkhausen frequency spectrum at

the origin is white and that a sharp frequency cuto� can be used to discriminate between

di�erent depths. To the extent that these assumptions are invalid, the calibration curves will

not coincide, and will each be characterized by a di�erent o�set and slope, like in the results of

Fig. 3.10. Fig. 3.10 shows the reciprocal of the average Barkhausen emission voltage for each

layer, plotted against uniaxial engineering stress. The fact that the calibration pro�le for Vorig1

does not coincide with that of Vorig2 and Vorig2−3, indicates that the Barkhausen spectrum at

the origin is either not white at the higher end of the frequency spectrum or that the asumption

of a sharp cuto� are invalid. It should be noted that the intercepts and slopes are also expected

to vary with magnetizing frequency, which should not happen in an all-inclusive theory.

Table 3.1: Calibration pro�le parameters

Pro�le Depth span (µm) b′ (msA−1N−1) Adj. R2

1
Vorig1

0-60 −9.22× 10−13 0.98

1
Vorig2

60-120 −8.95× 10−14 0.97

1
Vorig2−3

60-180 −1.27× 10−13 0.96

After the calibration pro�le is created, a specimen of the same composition and unknown

stress state can be evaluated. This is done by conducting a Barkhausen measurement and

by applying (3.26) and (3.27) to compute the Barkhausen peak envelope voltages in the �rst

and second layer. Using the calibration pro�le, the stress in each layer can subsequently be

obtained. By decreasing the lower detection frequency from ω2 to ω′2 in (3.27), the average

stress magnitude σ̄2−3 in the combined second and third layer can be determined, provided the

calibration pro�le for 1/Vorig2−3 exists. Fig. 3.11 illustrates this concept.
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Figure 3.10: Experimentally calculated calibration pro�les for (a) 1/Vorig1, (b) 1/Vorig2 and (c)
1/Vorig2−3, �tted with a linear regression and plotted with 95% con�dence intervals. These trends
are obtained by �ltering the Barkhausen data collected from an ASTM A36 steel specimen under
uniaxial tension. In order to produce the calibration pro�les, it is assumed that the stress along
the measurement direction remains uniform throughout the depth of the specimen. Table 3.1 lists
the computed calibration pro�le parameters.
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Figure 3.11: Conceptual calibration pro�les corresponding to speci�c depths for (a) 1/Vorig1, (b)
1/Vorig2, and (c) 1/Vorig2−3. A specimen of unknown stress state can be assessed by applying (3.26)
and (3.27), keeping ω0, ω1 and ω2 constant with respect to the calibration stage. The reciprocal
value of the measured average Barkhausen emission in the �rst layer 1/Vorig1 will then lead to a
stress σ1, via the pre-established linear relationship. In a similar manner, the stress σ2 in the second
layer, and the average stress σ̄2−3 in the combined second and third layer can be found.
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3.5.4 Shortcomings of this approach

Evaluating the integrals that represent the emission frequency spectra originating in the

�rst and second layers of material, we obtain

∫ x1

0
e−ζx

√
ωdx =

1

ζ
√
ω

(
1− e−ζx1

√
ω
)

(3.28)

and

∫ x2

x1

e−ζx
√
ωdx =

1

ζ
√
ω

(
e−ζx1

√
ω − e−ζx2

√
ω
)
, (3.29)

respectively (note that we have assumed Vorig = 1 and independent of frequency). An interactive

GUI was written in Matlab to plot these, in order to graphically visualize the model assumptions

and evaluate them.

� The assumption of a sharp frequency "cuto�" is unrealistic, and implies that the signal

emanating from the second layer can be ignored in the �rst frequency range (where the

signal is �ltered from ω0 to ω1). By visual inspection of Figure 3.12, one can see that

this is a severe approximation, as the measured signal comprises at least 20 percent of the

second layer emissions.

� The second assumption, which is an inherent assumption (and not explicitly stated) in

this model, is that each spectral component carries stress information, and that we do not

need to look at the spectrum in its entirety. But by piecewise considering the spectrum we

are omitting information, since the Barkhausen spectra from all depths completely overlap

to produce the measured signal at the surface. This assumption is strongly coupled to the

�rst.

� The third assumption is that we can take an inverse Fourier transform to revert back

to the time domain signal and measure the peak amplitude. This method is inherently

�awed: we are not consistent with our choice of parameters that describe the signal as

we switch between time and frequency domains. Essentially, we are assuming that Vpeak
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Figure 3.12: Graphical representation of the model equations. The red and green curves represent
the integrals from 0 to x1 and x1 to x2 respectively. The blue curve is a sum of the aforementioned,
and represents what is seen at the surface. The curves are all normalized by the maximum value
attained by the blue curve, such that their maximum values always sum to 1.
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of a single sinusoid is qualitatively and quantitatively equivalent to Vpeak of a wideband

signal, which is not true.

3.6 Analysis in the frequency domain

Given the shortcomings that were described in the previous section, we found that a re-

evaluation of the model was necessary. More speci�cally, the "sharp cuto�" assumption which

lead to the windowed spectrum approach was abandoned, to give way to a methodology where

the entire spectrum is considered at once.

This is in some way a transition from a semi-parametric to a parametric approach. In

the former, which is a time- and frequency-domain hybrid, a moving average smoothing al-

gorithm was used to obtain a scalar value (Vpeak) from a measured time series, after making

some assumptions about the underlying nature of the physical process (white noise assumption,

exponential attenuation). In the latter, which is a purely frequency-domain approach, a model

with a number of parameters is derived, and that model is �tted to the experimental data,

in order to obtain an estimate of those parameters. Both approaches have their merits and

disadvantages, so it was considered necessary to address both for the sake of completeness.

For example, a method that employs non-parametric statistics could be trained against

known methods to yield the desired result, without knowledge of the underlying physical process.

This may restrict the model to a very speci�c case. On the other hand, a parametric method

may provide useful insight into the underlying mechanism, but can omit important features

that allow the model to describe special cases. In other words, the former may be limited by

its speci�city, while the latter may be too general.

The following sections present the derivation of a multi-parameter model for the Barkhausen

spectrum, both for the general case, as well as for more speci�c cases.

3.6.1 General case - One layer formulation

Suppose that the longitudinal (parallel to the surface) component of stress in a ferromagnetic

specimen varies linearly with depth. An adequate expression to describe this variation would

be the following:
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σ(x) = mx+ σ0, (3.30)

where σ(x) is the longitudinal component of stress, as a function of depth x, m is the slope of the

stress-depth gradient, and σ0 is the stress at the surface, when x = 0. A visual representation

of this can be seen in Fig. 3.13.

σ0

σ(x)

x

m = ∂σx
∂x

Figure 3.13: Plot of a stress-depth gradient, with tensile stress at the top surface, monotonically
decreasing to a compressive stress at the lower surface. Here, x indicates distance from the top
surface of the specimen.

From theory and previous experimental results [39, 47], we know that 1

1

Vorig(0)
− 1

Vorig(σ)
=

3b′σ

µ0
(3.31)

where V (σ) and V (0) are the Barkhausen voltage amplitude at the origin under stress and no

stress respectively, b′ is a modi�ed magnetostrictive constant and µ0 is the magnetic permeability

of free space.

For small magnitudes of stress, we can approximate (3.31) by its Taylor series expansion

around σ = 0 (equivalently referred to as Maclaurin series). Solving for V (σ):

V (σ) =
1

1
V (0) −

3b′σ
µ0

(3.32)

1This formulation follows from (2.19) which was also shown to be valid in [47]. However, here it is assumed

that this relationship also holds for Vorig, which is necessary to proceed in the derivation.
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Then,

V (σ) ∼= V (0) +
dV (0)

dσ
σ +O(h2), (3.33)

and since

dV (σ)

dσ
=

3b′

µ0

(
1

V (0)
− 3b′σ

µ0

)−2

(3.34)

it follows that

dV (0)

dσ
=

3b′V 2(0)

µ0
(3.35)

and we conclude that to a �rst order approximation, the voltage V (σ) is proportional to

stress σ:

V (σ) = V (0) +
3b′V 2(0)

µ0
σ +O(h2). (3.36)

Since V (σ) ∝ σ, and the stress-depth pro�le is linear, such that σ ∝ x, it follows that

V (x) ∝ x. In other words, a change along depth in the longitudinal stress, will also result in a

change of the Barkhausen emission amplitude as a function of depth. If the stress gradient is

linear (i.e. stress depth pro�le resulting from four point-bending or approximate stress depth

pro�le resulting from shot peening), the following equation can be used to quantify the change

of Barkhausen amplitude at the origin with depth:

V (x) = a(mx+ σ0) (3.37)

Now, the measured Barkhausen spectrum at the surface will depend on the aforementioned

stress-depth pro�le. We can express the measured Barkhausen frequency spectrum Vmeas as

the following depth integral:
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Vmeas(ω) =

∫ xmax

0
V (x)e−ζx

√
ωdx (3.38)

= a

∫ xmax

0
(mx+ σ0)e−ζx

√
ωdx (3.39)

= am

∫ xmax

0
xe−ζx

√
ωdx+ aσ0

∫ xmax

0
e−ζx

√
ωdx (3.40)

= −am
[

1

ζ2ω

(
e−ζxmax

√
ω(ζxmax

√
ω + 1)− 1

)]
(3.41)

− aσ0

[
1

ζ
√
ω

(
e−ζxmax

√
ω − 1

)]
(3.42)

where ζ is the attenuation constant with units
√
SH/m, a function of magnetic permeability

and electrical conductivity, ω is the angular frequency. Parameter m, being the stress-depth

gradient, has units of Pa/m. Parameter σ0, has units of Pa, and can be thought of as the surface

stress. Now, since the units of Vmeas(ω) are V/Hz (resulting from Fourier transforming a time

domain voltage waveform), the scaling coe�cient must carry the units of V·Pa−1·Hz−1·m−1).

The parameter a can thus be thought of as a magnetomechanical scaling coe�cient, relating a

stress gradient to Barkhausen voltage in the frequency domain.

The parameter am is equivalent to Vorig in case of bending (which can be noted as Vorig| dσ
dx
6=0),

and the parameter aσ0 is equivalent to Vorig in case of uniaxial tensile stress (noted as Vorig| dσ
dx

=0

). For brevity, these two can be substituted by Vorig,b and Vorig,t. The e�ect of m on the spec-

trum can be seen in Fig. 3.14.

3.6.2 Case of constant stress along depth

When uniaxial tensile stress is applied to a specimen, such that the stress along depth is

invariant, the slope parameter m will be zero, reducing (3.42) to:

Vmeas(ω) = Vorig,t

[
1

ζ
√
ω

(
1− e−ζx

√
ω
)]

(3.43)

It can be shown, that in the limit of ω → 0, the equation of 3.42 converges to Vorigx, showing

that the signal is a linear combination of signals coming from all depths:
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Figure 3.14: E�ect of slope parameter m on the Barkhausen spectrum.

lim
ω→0

Vmeas = Vorig,t lim
ω→0

(
1− e−ζ

√
ωx

ζ
√
ω

)
(3.44)

= Vorig,t lim
ω→0

(
d
dω (1− e−ζ

√
ωx)

d
dω (ζ
√
ω)

)
(3.45)

= Vorig,t x (3.46)
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3.6.3 Two-layer case

3.6.3.1 Coupled V and ζ

Since multiple emissions occur in a layer, by taking the integral over a certain depth range,

the combined spectra of all emissions within that range are considered. That gives Vatt1(ω) as

the component of the signal detected at the surface [48, 49]:

Vatt1(ω) = Vorig1

∫ x1

x0

e−ζ1x
√
ωdx

= −Vorig1
ζ1
√
ω

(
e−ζ1x1

√
ω − e−ζ1x0

√
ω
) (3.47)

Similarly, for emissions originating in the second layer:

Vatt2(ω) = Vorig2

∫ x2

x1

e−
√
ω(ζ2(x−∆x)+ζ1∆x)dx

= −Vorig2
ζ2
√
ω

(
e−
√
ω(ζ2x2−(ζ2−ζ1)∆x)

− e−
√
ω(ζ2x1−(ζ2−ζ1)∆x)

) (3.48)

It should be noted that in this treatment, two di�erent values of attenuation coe�cient ζ

have been assumed, one for each layer, which also implies that emissions attenuate at a di�erent

rates in each layer; this has been taken into account in the above equations. Uncorrelated white

noise has a uniformly distributed phase between −π and π; we can therefore use the assumption

that at the origin the phase is zero (mean value) such that, since the phase velocity is assumed

to be independent of frequency, the resulting phase at the surface is also zero, leading to only

constructive interference when all attenuated spectra are summed. By summing the emissions

in separate layers, we are also implicitly assuming that they are statistically independent. This

summation yields the measured spectrum at the surface Vmeas(ω), such that:

Vmeas(ω) =
∑
i

Vatti(ω), (3.49)

where Vatti is the Barkhausen signal from the ith layer. One can retrieve the stress state of

the material, by �tting the above expression to Barkhausen spectra measured at the surface

of a specimen, and extracting the value of stress-related parameters ζ and Vorig. With this
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approach, for n total layers, one obtains 2n parameters. It is possible to reduce the number

of �tting parameters by incorporating a Barkhausen-stress calibration relationship [39, 47] into

our model for the spectrum.

It was shown previously [42] that the reciprocal of the peak di�erential susceptibility 1/χ′

varies linearly with stress, as shown by (3.9). Also, in previous work [39], the voltage peak

envelope amplitude, VMBN,peak, was observed to follow a similar trend as χ′max with stress,

and thus (3.9) was modi�ed to give (3.10). Unlike b, which can be determined via a quasi-

stastic magnetostriction measurement, b′, the modi�ed coe�cient depends on the frequency of

magnetization, strength of magnetizing �eld and sensitivity of the Barkhausen probe, and is

thus not easily determinable.

By dividing (2.18) by (2.19), we yield

1
χ′(0) −

1
χ′(σ)

1
Vorig(0) −

1
Vorig(σ)

=
b

b′
(3.50)

Solving for Vorig(0) yields

Vorig(σ) = − b
b′

1
1

χ′(0) −
1

χ′(σ) −
b
b′

1
Vorig(0)

, (3.51)

where b, χ′(0) and Vorig(0) can be experimentally determined. The susceptibility at some value

of unknown stress χ′(σ) is related to µr and ζ such that

χ′(σ) ∼= µ′r(σ) = 2ρζ2(σ)/µ0 (3.52)

By substituting (3.51) into (3.47) and (3.48) (and consequently (3.49)), we are reducing the

number of �tting parameters from 2n to n+ 1.

To establish a relationship between stress and relative permeability, an extension to the

theory of ferromagnetic hysteresis [42] was used:

µr ∼= χ =
Ms

3a−
(
α+

3b(σ+σoffset)
µ0

)
Ms

, (3.53)

where a is a parameter which characterizes the shape of the anhysteretic magnetization, α is a

mean �eld term that quanti�es interdomain coupling, σ is the stress present in the sample and
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Figure 3.15: Calibration relationship, relating relative permeability and its reciprocal to stress.
We set a = 2019.620 Am−1, Ms = 2.485 × 105 Am−1, and α = 1.9119 × 10−2, which are typical
values for a soft steel. The values of b and σoffset were set to 1 × 10−17 m2A−2 and −800 MPa
respectively.

Ms is the saturation magnetization. Plots of µr and its reciprocal versus stress can be seen in

Fig. 3.15.

To simulate non-uniform strain, each layer was assigned a di�erent value of stress, by mod-

ulating the value of the di�erential permeability and thus the parameter ζ, which was de�ned

in the Theory section. Di�erent values of stress lead to di�erent y-axis intercepts and spec-

trum shapes, as shown in Fig. 3.16. To simulate a practical measurement and thus make the

treatment more realistic, random Gaussian noise was added to the simulated spectra. A least

squares algorithm was used to obtain the estimates ζ̂1 and ζ̂2, from which the stress can be

calculated, using the linear relationship shown in Fig. 3.15.
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Figure 3.16: Least-squares �t to simulated Barkhausen spectra, of the model of (3.49) combined
with the relationship in (3.51), for di�erent stress magnitudes in the �rst and second layer. The
value of b′, which quanti�es the sensitivity of the sensing element, was set to 1×10−22 m2V −2A−2.
The parameters χ′(0) ∼= µ′r(0), ρ and Vorig(0) were set to 42, 0.22 µΩm and 10 V, respectively.
The layer thickness ∆x was set to 50 µm. Gaussian noise was added to the spectra, to make the
modelling more realistic.
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CHAPTER 4. MEASUREMENTS AND INSTRUMENTATION

4.1 Experimental procedures

This section describes the experimental procedures that were used to validate the theory

presented in Chapter 3. Measurements were repeated several times to ensure that experimental

conditions were as consistent as possible.

4.1.1 Inducing uniaxial tensile stress

4.1.1.1 Experimental procedure

The �rst step in detecting stress variations along depth is to calibrate against a known stress-

depth pro�le. The simplest type of stress-depth pro�le is one where stress is constant along

depth. This can be obtained by subjecting a specimen to uniaxial stress. This specimen must be

manufactured according to the ASTM standard for tensile testing [50], which is designed such

that upon tension stress is concentrated in the central region of the specimen (gauge section)

where ultimately the fracture occurs.

During the tensile test, the control parameter is force, which is applied using a pneumatic

system, and the state variable is extension, which is measured using an extensometer. Strain is

then measured using the following formula [51]:

ε =
∆L

L0
=
L− L0

L0
(4.1)

where L0 is the original length of the specimen,L is the �nal length, and ∆L is the extension.

For this experiment, stress is referred to as σ, without a subscript denoting direction, as it is

implied that stress is measured along the direction of strain. However, the distinction between
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two types of stress must be made: true and engineering stress. True stress can be calculated by

the following formula:

σtrue =
F

A(ε)
(4.2)

where F is the force applied along the direction of strain and A(ε) is the cross-sectional area of

the specimen as a function of strain. As volume of the specimen must be conserved, elongation

of the specimen results in the reduction of cross-sectional area. This is commonly referred to

as the Poisson e�ect, with Poisson's ratio ν being a measure of this e�ect. Engineering stress

is given by [51]

σeng =
F

A
(4.3)

where A is the cross sectional area of the unstressed specimen and is taken to be a constant

throughout the experiment. For the purposes of this experiment, engineering stress was deemed

to be an adequate measure.

It is assumed here that the material is linear, elastic and isotropic. The stress that is applied

is uniaxial (or plane), which leads to the following elastic relationship [51]::

εx =
σx
E

(4.4)

where E is the Young's modulus (or elastic modulus), εx and σx are the strain and stress along

x-axis, respectively.
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4.1.1.2 Design and manufacture of ASTM specimen

In order to manufacture an ASTM E8 standard �dogbone� specimen for tensile testing, a

bar of hot rolled ASTM A36 steel was machined along the rolling direction. The specimen has

a thickness of 6.5 mm, width of 12.7 mm and gauge length of 26.5 mm. A three-dimensional

model with the placement of the sensor can be seen in Fig. 4.1.

Figure 4.1: Three dimensional visualization of the specimen for tensile testing, manufactured
according to the ASTM E8 standard. Sensor indicates where Barkhausen emissions were measured.

4.1.1.3 Experimental procedure

The specimen was subjected to uniaxial tension at a deformation rate of 3 mm/min, us-

ing an Instron 5969 tensile test machine. The specimen was magnetized with a Barkhausen

probe consisting of a magnetizing coil wound around a ferritic C-core electromagnet with cross-

sectional area of 25.6 mm2 (8 mm × 3.2 mm), and a sensing coil wound around a ferritic cuboid

with cross-sectional area of 3.6 mm2 (3 mm × 1.2 mm) positioned between the electromagnet

poles, and picking up the perpendicular component of the �ux density from the specimen. The

measurement was paused every ∼ 1000 N of load, in order to collect Barkhausen data along

the direction of stress, with the probe positioned as pictured in Figure 4.2. The Barkhausen
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Table 4.1: Magnetization conditions for tensile test

Magnetizing Voltage 1 V

Magnetizing Frequency 100 Hz

Sampling Frequency 2.5 MHz

Bursts 10

Filter Low 95 kHz

Filter High 1.25 MHz

Smoothing 10

equipment settings can be seen in Table 4.1. The maximum applied magnetic �eld was 0.5

kA/m, measured between the poles of the electromagnet. A total of �ve equally spaced mea-

surements were carried out for each value of stress, with every trial containing 10 Barkhausen

bursts. Because the specimen underwent small amount of relaxation every time the tensile test

was paused, the ensemble average of the waveforms obtained over that relaxation period was

taken and these were plotted against the stress. The specimen was brought to fracture.

Figure 4.2: Experimental setup, showing the grip of the tensile test machine, the A36 test speci-
men, and the Barkhausen probe kept in a stable position by the clamp.
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4.1.2 Inducing a linear stress-depth gradient

In order to induce a variation of stress with depth, a specimen can be subjected to four-point

bending. Four-point bending is used to apply bending moment on a specimen and establish a

linear stress-depth pro�le, ranging from tensile stress at the top surface to compressive stress

at the bottom surface, such as the one depicted in Fig. 3.13.

4.1.2.1 Design and manufacture of four-point bending device

For the purposes of this experiment, a four-point bending apparatus was designed and man-

ufactured. The apparatus was designed in the software packages DS SolidWorks and Autodesk

Inventor. A three-dimensional model and the manufactured part can be seen in Fig. 4.3. The

main body is composed of high strength aluminium (3070), and the cylindrical �xtures are

ceramic. The platform holding the lower two �xtures is displaced by means of a bolt, which if

rotated for a full 360 degrees produces a 1/8” de�ection upwards. This can be measured indi-

rectly by reading the rotation in degrees on the dial and then converting to vertical de�ection,

or directly by means of the digital extensometer. The Barkhausen sensor can be stabilized by

means of a mount with one degree of freedom, which can move along the direction of de�ection.



www.manaraa.com

55

(a)

(b)

Figure 4.3: Four-point bender. (a) 3D CAD design, (b) Photograph of manufactured part.
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4.1.2.2 Solid mechanics simulation of four-point bending

In order to obtain the stress-depth pro�le, a simulation in COMSOL Multiphysics was

carried out. The geometry was imported from the CAD model of the four-point bender. Two

materials were used in the model, namely ASTM A36 steel (for the specimen) and alumina (for

the ceramic �xtures). A custom mesh was created, to accommodate the need for a �ne mesh

in the volumetric region of the specimen where the stress-depth gradient is established. The

COMSOL solid mechanics module was used to perform the simulation. Given all the initial

and boundary conditions, the solver computes the gradient of the displacement u = [u v w]T ,

denoted as [52]:

∇u =


∂u
∂X

∂u
∂Y

∂u
∂Z

∂v
∂X

∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

∂w
∂Z

 (4.5)

where X,Y, Z are the material coordinates. From the above, the Lagrangian strain tensor ε is

calculated, via

ε ≈ 1

2

(
∇u +∇uT

)
. (4.6)

The above is an approximation of the Lagrangian strain tensor, as the second-order terms can

be neglected, as a consequence of assuming in�nitesimal deformation of a continuum body. The

linear strain tensor (also termed Cauchy strain tensor) is expressed as

ε =


εx εxy εxz

εyx εy εyz

εzx εzy εz

 . (4.7)

Strains with single subscripts denote principal strains, and double subscripts denote shear

strains, also commonly written as γij . When there is symmetry, arising from isotropy in ma-

terial properties, γij = γjj . The specimen and �xtures were speci�ed as linear isotropic elastic

materials, and the latter were also given the property of nearly incompressible material, as the
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hardness of the ceramic material far surpasses that of steel. In a linear isotropic elastic mate-

rial, the constitutive equations which relate stresses to strains, otherwise referred to generalized

Hooke's law, are the following [51]:

σx =
E

(1 + ν)(1− 2ν)
[(1− ν)εx + ν(εy + εz)− (1 + ν)(α∆T )] (4.8)

σy =
E

(1 + ν)(1− 2ν)
[(1− ν)εy + ν(εz + εx)− (1 + ν)(α∆T )] (4.9)

σz =
E

(1 + ν)(1− 2ν)
[(1− ν)εz + ν(εx + εy)− (1 + ν)(α∆T )] (4.10)

(4.11)

and

σxy = Gεxy (4.12)

σyz = Gεyz (4.13)

σzx = Gεzx (4.14)

where E is Young's modulus (or modulus of elasticity) which is a scalar (due to the isotropy

condition), ν is Poisson's ratio (scalar), and εi and σi are the principal strain and stress compo-

nents respectively. G represents the shear modulus of elasticity, εij represent shear strains, and

σij are the shear stresses, commonly denoted as τij since they re�ect torques. Note that these

equations are the more general form of (4.4) for uniaxial (or plane) stress-strain relationship,

which only de�nes this relationship normal to the plane on which the stress is applied. The

Cauchy stress tensor is expressed as:

σ =


σx σxy σxz

σyx σy σyz

σzx σzy σz

 (4.15)

This is a symmetric tensor, as angular momentum is balanced, meaning that σij = σji. This

has the physical consequence of the objects remaining at rest.



www.manaraa.com

58

The bottom two �xtures and the specimen were assigned a free condition (which implies

that no constraints or loads acting on the boundaries), and given a prescribed displacement

upwards, which assigns the displacement vector v a �nite value for each run. The upper two

�xtures were given a �xed constraint, which contrains the displacement vectors u, v, and w to

be zero in all directions. The simulation was parametrically swept, such that the solver runs

multiple times, each time for a di�erent amount of prescribed displacement. A stationary, direct

solver was used to solve the problem. A similar simulation was set up for a specimen of smaller

thickness. The meshes for both specimens and a preview of the simulation results, visualizing

the principal stress component in the x direction can be seen in Figs. 4.4a and 4.4b (complete

set of results are presented in Chapter 6).

(a)

(b)

Figure 4.4: Mesh and simulated geometry for the four-point bending experiment for the 1 mm
thick specimen.
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4.1.2.3 Experimental procedure

In order to relieve any residual stresses which may have been present due to rolling, the

block of A36 steel was �rst heat treated at 922 K for 2 hours and then slow cooled over 8

hours. The individual specimens were then extracted from the main block via electric discharge

machining (EDM).

Each specimen was positioned on the platform of the four-point bender and the platform

was displaced to secure the specimen in a stable position. A total of three measurement trials

were carried out for each value of de�ection, with every trial containing 10 Barkhausen bursts.

The measurement settings are listed in Table 4.2. In total, the specimen was de�ected 18 times,

each time by 10 degrees of rotation, or equivalently ∼ 0.088 mm of vertical displacement. The

specimen was taken beyond the yield limit, but not stressed enough for it to fracture. The

specimen was not de�ected further, as there were concerns of the surface curvature adversely

a�ecting the specimen-sensor coupling.

Figure 4.5: Experimental setup, showing the �xtures of the four-point bender, the A36 test
specimen, and the Barkhausen probe kept in a stable position by the customized clamp.
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Table 4.2: Magnetization conditions for bending test

Magnetizing Voltage 1,3,5,7 V

Magnetizing Frequency 20,60,100,140,180,220 Hz

Sampling Frequency 2.5 MHz

Bursts 10

Filter Low 95 kHz

Filter High 1.25 MHz

Smoothing 10
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CHAPTER 5. SIGNAL PROCESSING AND SOFTWARE

DEVELOPMENT

5.1 Signal processing tools

Custom tools were written to facilitate the analysis and visualization of measured Barkhausen

signals. The software was written using MATLABr(2012a, The MathWorks, Natick, MA,

USA). The backbone of the software resides in the class BarkhausenSignal.m, which bundles up

two main features needed to e�ectively process a measured signal: 1) properties that describe the

signal, and 2) functions that operate on the signal. This programming paradigm is commonly

referred to as object-oriented programming, where a class (containing properties and functions)

can be instantiated in the form of an object. This lends to the user a capability of instantiating

many distinct objects belonging to the same class and storing them in memory and/or on disk.

Objects of type BarkhausenSignal are designed to store a Barkhausen waveform and various

time- and frequency-domain statistics, as well as the functions needed to derive these statistics

form the waveform.

What follows is meant to provide an overview of the signi�cant properties and functions

employed in the designed classes, while omitting redundant ones. Describing the intricate

details of designing a class is beyond the scope of the present thesis.

5.1.1 Mathematical de�nitions

Before advancing to a description of the mathematical operations performed by the soft-

ware, it is necessary to provide a de�nition of the Barkhausen signal in terms of its statistical

properties.

The long-range structure of a magnetic material gives rise to its bulk behaviour (M-H loop),
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which can be de�ned as deterministic. The short-range structure is responsible for random

�uctuations in measurements, which is re�ected in Barkhausen signals. While their time series

contain a deterministic component, they are predominantly stochastic, as they largely depend

on �ne microstructural variations.

Inspection of the long-range features of a Barkhausen signal, such as the envelope shape,

can provide information relating to the macroscopic stress state within the material 1. On the

other hand, measures like the pulse height distribution, are more representative of microscopic

features like grain size.

When driving the material with an alternating �eld (of sinusoidal or triangular shape) at

a high rate of magnetization, a periodicity can be seen in the measured Barkhausen signal. It

will be seen in the next subsections that tt can be classi�ed as a cyclostationary process.

5.1.1.1 Stationarity

A stationary process is formally de�ned as [53]

fx(t1)(α) = fx(t2)(α) (5.1)

and a process that exhibits stationarity in the wide-sense is de�ned as [53]

E[x(t1)] = E[x(t2)] (5.2)

and

Cov[x(t1), x(t2)] = Cov[x(t1), x(t1 + τ)] (5.3)

where τ is the time di�erence between successive values in the time series. In simple terms,

(5.2) states that given multiple observations of the stochastic function x(t), the amplitude at

time t1 is on average equal to the amplitude at time t2. An example of that would be the steady

sound created by a stream of water given constant conditions (the mean and covariance do not

change with time).

1This occurs because the Barkhausen envelope is highly correlated with the di�erential magnetic suscepti-

bility, whose shape depends on the stress state of the material.
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5.1.1.2 Cyclostationarity

In the case of Barkhausen noise, however, there is periodicity - one can clearly see periodic

peaks and troughs in the signal; we can express this periodicity as N interleaved stationary

processes, where N is the number of data points in the time series. From this it follows that

in a cyclostationary process, the probability distribution (or in this case, voltage amplitude

distribution) of the points in the time series varies periodically with time. In other words, the

mean and covariance vary periodically with time.

A process x(t) is wide-sense �rst order cyclostationary, if [53]

E[x(t)] = E[x(t+ lP )] (5.4)

where l is an integer and P is the period. Consider a white noise process (which is stationary in

the wide sense) with normally distributed amplitude of mean zero and variance σ2 distributed

as ∼ N(0, σ2). A deterministic term which represents the di�erential susceptibility as a function

of time χ′(t) (under the action of an applied �eld) is multiplied with V (t), thereby lending it

periodicity:

VBN = χ′(t)V (t) =
dM

dH
V (t) =

dM

dt

dt

dH
V (t) (5.5)

In other words, χ′ modulates the white noise term V (t). This is the simplest model of a

Barkhausen signal in the time domain. For the purposes of mathematical tractability, we are

ignoring any attenuation e�ects which the signal undergoes while propagating through the

material (see Chapter 3 for such treatment). The term dM/dt contains the deterministic, bulk

variation of magnetization with time, dH/dt is the rate of change of applied �eld with time and

lends periodicity to VBN , and V (t) is the stochastic term. Overall, modulated signals such as

the one described in (5.5) are cyclostationary processes.

5.1.1.3 Autocorrelation

The autocorrelation function is de�ned as [53]
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Rff (τ) = lim
T→∞

1

T

∫ T

0
f(t+ τ)f∗(t) dt (5.6)

If a signal is second order cyclostationary it has a periodic autocorrelation function. Periodicity

in the autocorrelation function is formally expressed as [53]

Rff (t, τ) = Rff (t+ T, τ) (5.7)

where T is the period over which the function repeats itself. In strict terms, the Fourier

transform of a wide sense stationary stochastic signal does not exist, since such a signal has

in�nite energy. However, the autocorrelation function asymptotically approaches zero (which

makes it an energy signal), and its Fourier transform exists. The Fourier transform of the

autocorrelation function is called the power spectral density function, S(f) [53]:

S(f) =

∞∑
k=−∞

R(k)e−jωkT (5.8)

Although in strict mathematical terms the Fourier transform of a cyclostationary signal does

not exist, the assumptions that were used to derive the physical model of Barkhausen emis-

sions (outlined in Chapter 3) naturally lead to an expression for the frequency spectrum of

Barkhausen noise at the surface, and not the power spectral density. It must be mentioned

here that the above de�nitions were included for completeness, to demonstrate awareness of the

mathematically rigorous way of handling the signal processing aspect of the problem and to

highlight possible future routes for improving the signal processing methods presented in this

chapter. The power spectral density was calculated for some datasets, and compared with the

Fourier voltage spectrum in order to reassure that the main features (i.e. spectral shape) are

present in both cases. The comparison was qualitative in some aspects, as the two methods yield

di�erent units (W·Hz−1 vs. V·Hz−1). The Fourier method was deemed to be more appropriate

for the following reasons, in descending order of importance:

� The power spectral density was calculated in MATLAB via the Welch method, and then

converted into an amplitude spectrum. The result was reasonably close to that obtained

from the FFT method (Fig. 5.1).
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� The assumptions that were used to derive the physical model of Barkhausen emissions

(outlined in Chapter 3) naturally lead to an expression for the frequency spectrum of

Barkhausen noise at the surface, and not the power spectral density, which is not as

mathematically tractable.

� The probability of error increases with the number of calculations. Obtaining the Fourier

spectrum directly from a time series is therefore computationally less risky.

� The number of data points in each time series was in the millions, which reduces the

uncertainty in calculating the Fourier spectrum.

� The region of interest in the spectrum is at the low frequency end, where uncertainty is

less than that at the high end.

5.1.2 Mathematical operations

5.1.2.1 Envelope calculation

In order to calculate the envelope of a Barkhausen waveform, a smoothing algorithm is used,

which calculates the moving (or running) average of the Barkhausen time series. This operation

can be described by the following formula:

Vi =

∑i−1
j=i−k Vj + Vi +

∑i+1
j=i+k Vj

k + 1
(5.9)

for k = 2n− 1, where n is a non-zero, positive integer. Parameter k = 1 designates the order of

the moving average operation.

Since the Barkhausen signal is centered and somewhat symmetric around zero 1, the moving

average of the time series would �uctuate around zero, as positive and negative amplitude

would eliminate each other. To calculate the envelope, the negative values are negated, thus

eliminating the negative part of the signal. A moving average calculation is performed on the

1The mean of the time series approaches zero as the DC component of the dB/dt waveform is removed by

high-pass �ltering, to obtain the Barkhausen signal.
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Figure 5.1: Comparison of power spectral density and Fourier magnitude calculations (normal-
ized).
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resultant time series. This is then multiplied by a heuristically determined scaling factor, which

levels the envelope. This scaling factor has remained constant throughout all analyses.

5.1.2.2 Peak calculation

The peak calculation algorithm that was written takes advantage of the fact that for any

smooth, univariate function, when the �rst derivative is zero it means that a stationary point

has occurred. This can be either a maximum, a minimum or a point of in�ection. However,

since the envelope only exists for positive values, dV/dt = 0 will mean that at that point, a

peak occurs. It is then straightforward to calculate the peak position by querying the array

index of the peak value.

5.1.2.3 Root mean square calculation

The continuous-time representation of the root mean square (RMS) voltage of a signal is

de�ned as [53]:

VRMS =

√
1

b− a

∫ b

a
[f(t)]2 dt (5.10)

where a ≤ t ≤ b and f(t) is a smooth and continuous function of t in the interval [a, b].

When dealing with digitized measurements, the discrete-time version of the same expression is

employed:

VRMS =

√√√√ 1

N

N∑
i=1

V 2
i (5.11)

where Vi are the discrete measurement samples and N is the number of samples. This equation

is analogous to the expression for the standard deviation of a time series (or population) when

the mean of the data set is zero, such that [53]
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σ =

√√√√ 1

N

N∑
i=1

(Xi − µ)2 (5.12)

=

√√√√ 1

N

N∑
i=1

X2
i (5.13)

In the case of Barkhausen time series, the condition of µ = 0 is true, and the standard

deviation of the dataset can be computed instead.

5.1.2.4 Power calculation

The energy of a real, continuous-time signal can be calculated using the following formula

[53]:

E =

∫ ∞
−∞

V 2(t)dt (5.14)

and the power

P = lim
T→∞

1

T

∫ T/2

−T/2
V 2(t)dt (5.15)

Their discrete time representations will be [53]

E =

∞∑
i=−∞

V 2
i (5.16)

and

P = lim
N→∞

1

2N + 1

N∑
i=−N

V 2
i (5.17)

respectively. An energy signal satis�es the condition E <∞ (meaning it has �nite energy), and

a power signal satis�es the condition 0 < P <∞ (meaning it has �nite power). The Barkhausen

signal can be classi�ed as a power signal, as the energy is in�nite (if we keep magnetizing the

material sinusoidally we will keep measuring Barkhausen emissions) and the power is �nite and

non-zero.
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5.1.2.5 Calculation of pulse height distribution

The sudden displacement of a domain wall gives rise to a change of �ux over time, which

in turn induces a voltage in the sensing coil. This voltage can be shown to be proportional to

the velocity of the domain wall. According to Faraday's law of induction, the measured voltage

V (t) can be shown to be proportional to the rate of change of magnetization dM(t)/dt:

V ∝ dM

dt
. (5.18)

The quantity dM/dt can be expressed as

dM

dt
=
dM

dx

dx

dt
, (5.19)

where dx/dt is the velocity of the domain wall. Assuming dM/dx is a constant (meaning

magnetization does not vary spatially, which is true over small distances), this proves that the

voltage is proportional to the velocity of the domain wall. In a practical situation, where a mul-

titude of domain walls are displaced over di�erent locations within the material, the measured

signal is composed of microsecond pulses, which are the superposition (whether constructive or

destructive) of these induced pulses. The pulses seen at the point of measurement come in a

variety of durations and amplitudes. Even though it is non-trivial to spatially locate and sepa-

rate individual pulses in the time-domain, the signal can be high-pass �ltered to only keep the

surface emissions, and calculate the distribution of amplitudes and durations of the resulting

pulses.

This is implemented by specifying a noise �oor and tracing the excursions of the signal above

and below this threshold voltage. The duration of a Barkhausen pulse, or avalanche will be

equal to the time it takes for the measured voltage to intersect the noise �oor, and its amplitude

will be the maximum voltage reached during that excursion. The algorithm scans through the

Barkhausen signal and plots a distribution of durations and amplitudes.

Typically, plastic deformation increases the number of low amplitude pulses (due to the in-

creased dislocation density), while when under elastic deformation an increased pulse amplitude

is observed (as domain walls travel larger distances in the absence of dislocations).



www.manaraa.com

70

5.1.2.6 Calculation of Fourier Transform

The Fourier transform of a voltage signal V (t) of �nite energy is de�ned as [53]

F(ω) =

∫ ∞
−∞

V (t)e−jωtdt (5.20)

where t denotes the time variable and ω denotes angular frequency. The Fourier transform is

essentially the inner product of a function with an orthonormal basis set, which allows expressing

any periodic function in terms of a Fourier series, which is a sum of sinusoids of di�erent

frequencies and amplitudes. The Fourier basis set is de�ned as [53]

Φm(t) = ejmω0t for −∞ ≤ m ≤ ∞ and ω0 =
2π

P
(5.21)

A property of this basis set is its orthonormality, which means that the inner product of two set

functions 〈Φm,Φn〉 is non-zero when m = n and zero otherwise. In the process of expressing a

time signal in terms of its Fourier components (which are complex sinusoids), one obtains the

coe�cients (or amplitudes) zm for each sinusoid:

zm =
1

P

∫ P

0
V (t)Φ∗m(t) (5.22)

where P is the period of the signal. After calculating zm for −∞ ≤ m ≤ ∞, the voltage V (t)

can be expressed as:

V (t) =

∞∑
m=−∞

zmΦm(t) (5.23)

It is important to note that in the case of Barkhausen signals, it is almost imperative to obtain

a multitude of observations to then calculate the ensemble average. However, something that

is not readily obvious, is the order of operations, which matters when the operations are not

associative. More speci�cally, both the Fourier transform and the expectation of a signal are

linear operations and therefore associative. Thus, the following holds true:

F{E[Vi(t)]} = E[F{Vi(t)}] (5.24)
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However, since the model for the Barkhausen frequency spectrum only takes into account the

magnitude of the Fourier transform, |F(ω)|, we have to consider the case where the magnitude

is taken before or after averaging the observations. In the former case, the following relationship

holds true:

E[|F{Vi(t)}|] = E[|Fi(ω)|] 6= |F{E[Vi(t)]}| (5.25)

In fact, it was shown in practice that it is better to take the expectation of the magnitude

spectra, rather than the expectation of the time series. The resulting magnitude spectra are

smoother, due to the fact that before averaging the phase information is omitted.

5.1.2.7 Finite Impulse Response (FIR) �ltering

Filtering is central to the idea of depth pro�ling. Whereas digital �ltering was not employed

in the later stages of this project (as the idea prevailed that the entire frequency spectrum

contains extractable depth information), in the �rst approach, where the high-frequency part

of the signals were isolated, it was necessary to process the signals using a high-pass �lter.

While analog systems have an in�nite impulse response, the discrete nature of digital systems

limits them to a �nite impulse response (FIR). The impulse response of a �lter in the discrete

frequency (or z-) domain is denoted as H(z), which can be de�ned as the ratio of the output

Y (z) to the input X(z):

H(z) =
Y (z)

X(z)
(5.26)

In the MATLAB implementation, the �lter design toolbox was used to programmatically create

�lter objects that can operate on time series. Four types of �lter were created, namely low-pass,

band-pass, high-pass, and arbitrary frequency response. A notable point is that the order of

the �lter increases as the roll-o� (distance between stop and pass frequencies) becomes steeper.

This, in turn, increases the size of the �lter object in memory, slows down computations, and

sometimes leads to spurious results. That is the reason why the roll-o� was set to increase

linearly as a function of passband frequency, such that
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kFpass = |Fpass − Fstop| (5.27)

where k is an arbitrary constant. This safety mechanism guarantees that the �ltering algorithm

does not terminate unexpectedly, or causes the operating system to crash.

5.1.2.8 Simulated Annealing

In assessing the predictive capability of a theoretical model, comparison with real world

data is necessary. Fitting the model to a set of experimental data is performed in the hopes of

observing a deterministic variation of the model parameter(s) in response to a control variable.

This is usually done by calculating the forward model with a given set of initial parameter

values, and minimizing the objective (or cost) function with respect to those parameters, and

subject to constraints on those parameters. A typical optimization problem can be written as

[54]:

min
x∈Rn

f(x) subject to


ci(x) = 0, i ∈ E

ci(x) ≤ 0, i ∈ I .

(5.28)

where x is the vector variables (or unknowns, or parameters), f is the function to be minimized,

and c is the constraint vector, which speci�es the constraints that are imposed on the parameters.

For the situation addressed in this thesis, the simplest form of the optimization problem will

look as follows:

min
Vorig ,ζ

Vmeas(ω;Vorig, ζ) subject to


Vorig > 0,

ζ > 0.

(5.29)

Depending on the model formulation, more parameters other than just Vorig and ζ can be

included in the optimization (which will become obvious in later chapters). In the case of

convex functions, which only contain one stationary point, this is rather trivial, since a local

minimum must also be a global minimum. For non-convex, non-linear objective functions,

the problem becomes more di�cult, as the objective function will contain multiple minima, of
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which only one can be the global one. There are multiple methods that can be used to estimate

parameters from a given set of data. One of those is the least squares method, which can be

used to solve both linear and non-linear problems. In this method, the goal is to minimize the

sum of squares of residuals. The residuals are de�ned as the di�erence between the measured

data yj and the forward-model calculated data Vmeas over a set of frequencies ωj ∈ [0,∞) for

given parameters Vorig and ζ.

rj(Vorig, ζ) = yj − Vmeas(ωj ;Vorig, ζ), j = 1, . . . ,m (5.30)

Minimizing the sum of squares of residuals can be expressed as

min
Vorig∈R
ζ∈R

f(Vorig, ζ) =
m∑
i=1

r2
i (Vorig, ζ). (5.31)

While this method of obtaining parameter estimates yields good results for certain problems,

there are some drawbacks. Least squares optimization is unconstrained, which may lead to

unrealistic parameter estimates. Also, the chance of getting �trapped� in a local minimum

(rather than a global minimum) is high.

Simulated annealing [55] provides a better alternative to optimizing functions with multiple

local minima, as it does not rely on computing derivatives numerically. It depends on a scheme

which accepts or rejects function evaluations on a probabilistic basis, which drives it uphill and

downhill from local minima until it converges to the global minimum. While computationally

it is not as e�cient, the initial values provided to the algorithm have little in�uence on the end

result, and thus alleviate the need for manually restarting the algorithm with di�erent inputs,

like in the case of least squares. It is used extensively to optimize non-convex, non-linear

objective functions and has been proven superior to the genetic algorithm [55] in solving certain

problems. In the case of this research, the primary reason for using it is the large Barkhausen

data sets that were collected and the immense number of function evaluations needed; a least

squares algorithm would require manually restarting the algorithm multiple times.

Given two initial input values, say Vorig and ζ, an objective function evaluation f(Vorig, ζ)

is made. Next, the algorithm chooses two new parameter values V ′orig ζ
′, based on the following



www.manaraa.com

74

condition:

V ′orig = Vorig + r · vVorig (5.32)

ζ ′ = ζ + r · vζ (5.33)

where r ∼ U(−1, 1) and vVorig and vζ are the step lengths for each parameter. If the

condition

f(V ′orig, ζ
′) < f(Vorig, ζ) (5.34)

is true, the algorithm accepts the new function evaluation f(V ′orig, ζ
′) as the best answer, and

the algorithm proceeds downhill. If the above condition is not true, the algorithm uses a

probabilistic criterion, named the Metropolis criterion, to decide whether or not to accept the

new function evaluation. The probability

p = exp
(
(f(V ′orig, ζ

′)− f(Vorig, ζ)/T
)

(5.35)

is computed, where T is the annealing temperature 1. If p is greater than p′ ∼ U(0, 1), the new

parameters are accepted. It can be seen that the probability of acceptance depends on both the

distance f(V ′orig, ζ
′)− f(Vorig, ζ) and the annealing temperature T . As more parameter values

are accepted, their associated step lengths increase, in order to sample a larger region of the

parameter space. This also reduces the temperature such that the new temperature

T ′ = rTT (5.36)

where rT ∼ U(0, 1). As the temperature decreases, uphill moves are less frequent, which also

reduces the step lengths by rejecting more and more function evaluations.

There are a number of criteria that one can choose to terminate the algorithm with. In the

MATLAB rimplementation, the user can specify the total number of function evaluations, the

1This naming convention derives from the of annealing a metal, where the temperature is decreased slowly,

to allow the material to reach its minimum energy state and not get trapped in metastable states, which are the

physical analogue to local minima in an optimization problem.
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objective function tolerance, as well as the di�erence between successive function evaluations.

These require careful selection (and generosity, in the case of number of function evaluations),

which comes from experience in handling a particular type of objective function. If the number of

total function evaluations is too low, the algorithm may never get enough time to reach the global

minimum; the more local minima, the more function evaluations it usually requires. Similarly,

if the objective function tolerance is set too high, the algorithm may terminate prematurely.

Now, the di�erence between successive function evaluations is a delicate criterion. In some

ways it is a safety net, which compensates for the case of never reaching the global minimum

(which is not a rare scenario). If the di�erence between, say, 5 best function evaluations is really

small, the algorithm terminates. While there could possibly be a better value, it may not be

reachable within a realistic timeframe. These criteria were experimented with multiple times,

until the algorithm seemed to converge reasonably fast (within approximately 4000 function

evaluations), with a low objective function tolerance and low di�erence between successive

function evaluations.

Since simulated annealing is a stochastic �tting algorithm, it was deemed necessary to run

the algorithm 30 times for each dataset (minimum number of samples to yield a normally

distributed set, according to the Central Limit theorem [56]), of which the mean is then taken.

Since the Barkhausen data set contains a large stochastic component, and the algorithm is also

stochastic, it is expected that the variance of results is relatively large. The mean, however,

should follow a clear enough trend to prove that the model is capable of extracting depth-

dependent information.

5.1.2.9 Summary of Barkhausen signal analysis

The signal analysis algorithm entails several stages, which can be grouped as below:

� Data loading stage (initiated by running script)

1. Specify path to .txt �les containing Barkhausen data

2. Specify magnetization parameters (magnetization frequency and amplitude)
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3. Specify control parameter (i.e. stress or magnitude of de�ection)

ControlParameterBkhExp1mm_Pa = ControlParameter_SurfStress_new(1,:);

BkhExp1mm_Pa_3V_100Hz = BarkhausenExperiment('path/to/file/3V_100Hz', ...

ControlParameterBkhExp1mm_Pa, 'Longitudinal Surface Stress (Pa)', [8 3], [4

20 2.5e6]);

BkhExp1mm_Pa_3V_100Hz.LoadAverageDataFiles;

� Signal processing stage

By default, upon creation of every BarkhausenSignal object, the following commands are

executed:

BkhSignal.ComputeEnvelope('Raw.allcycles') % Computes the envelope of the waveform

BkhSignal.ComputePeakStats('Raw.allcycles') % Computes peak locations and amplitudes

BkhSignal.ComputeRMS('Raw') % Computes R.M.S. voltage

BkhSignal.ComputePower('Raw') % Computes signal power

BkhSignal.ComputePHD('Raw') % Computes the pulse height distribution

BkhSignal.ComputeFFT('Raw.allcycles') % Computes the Fast Fourier transform

BkhSignal.ComputeWindowedFFT() % Computes the Fast Fourier transform using window

The following command has to be manually entered by the user, and will calculate the

time domain statistics of the created experiment.

BkhExp1mm_Pa_3V_100Hz.PopulateExpStats('Raw');

� Visualization stage (optional)

A variety of automated plotting functions were written to facilitate fast visualization of

results in the time- and frequency domain. Their use is optional but highly recommended

prior to performing further analysis, as they can provide useful information regarding the

validity of results.
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BkhExp1mm_Pa_3V_100Hz.Plot('Raw.RMS')

BkhExp1mm_Pa_3V_100Hz.Plot('Raw.NPeak')

BkhExp1mm_Pa_3V_100Hz.Plot('Raw.PPeak')

BkhExp1mm_Pa_3V_100Hz.Plot('Raw.PPeakPos')

BkhExp1mm_Pa_3V_100Hz.Plot('Raw.NPeakPos')

BkhExp1mm_Pa_3V_100Hz.Plot('Raw.Power')

BkhExp1mm_Pa_3V_100Hz.Plot('Raw.Spectrum')

Raw can be substituted with Proc, to display the above plots but for the processed (�l-

tered) signals.

� Model �tting stage

In the model �tting stage, the simulated annealing algorithm within the BarkhausenEx-

periment class is invoked, and after each iteration of the parameter extraction process,

the parameter estimates are stored in a multidimensional array. There are two renditions

of the model that are used to analyze the data, which are outlined in the next subsection.

5.1.2.10 Analysis con�gurations

Analysis of frequency domain data using m parameter method

In summary, in this method the model of (3.43), which assumes a stress gradient along

depth, is �tted to Barkhausen frequency spectra, for many di�erent magnitudes of de�ection and

observing the change of the �tted parameters m, σ0 and ζ as a function of longitudinal surface

stress, for all four specimens. The algorithm was incorporated into the developed MATLAB

libraries, and comprises of the following main steps:

1. Load measurements and obtain ensemble average of multiple measurement trials for each

magnitude of de�ection, using class BarkhausenExperiment.m.

2. Calculate FFT of entire time domain waveform resulting from the ensemble average.

3. Con�gure algorithm options prior to computation:

Params = [2 2 10;... % Data option
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1 1 1;... % a

0+sqrt(10^16)*rand(1) −10^8 10^8;... % m

500 + sqrt(500)*rand(1) − 0 1000;... % sigma_0

500 + sqrt(500)*rand(1) − 0 1000;... % zeta

0 0 0;... % k

depth depth depth] % x_max

The �rst line, �rst entry indicates which version of the Fourier transform is to be used

(windowed - 1 or full time series - 2 1), while the second and third entries can be used

to exclude a given percentage of the frequency spectrum from the lower and higher ends,

respectively. This is useful if there is a low or high-frequency region where it is known

there is a lot of external interference which the model does not explain.

Lines 2 to 7 correspond to parameters a, m, σ0, ζ, k
2, and xmax. The three entries

correspond to initial value, lower and upper bounds, respectively. As can be seen, all

parameters were allowed to vary, except for k, and the detection depth xmax (which has

to be speci�ed). The algorithm options are summarized in Table 5.1.

Table 5.1: Simulated annealing algorithm options.

Parameter Initial Value Lower Bound Upper Bound

m N(0, 1016) −108 108

a 1 1 1

σ0 N(750, 2502) 500 1000

ζ N(750, 2502) 500 1000

Initial parameter values are randomized, to avoid correlations in the results. Command

rand(1) returns random variable X drawn from the pseudorandom distribution N ∼

(0, 1). It is possible to use the lower and upper bounds, bL and bU , to denote that the

initial value input should be bounded such that the upper and lower bounds, bU and bL,

are one standard deviation away from the mean, or initial value a:

1The windowed Fourier transform only uses data points around the peak of the waveform, where permeability

approaches that of the coercive point in the B-H loop
2Parameter k lends a 1/ωk dependence to the spectrum; this was only used in measurements when the rest

of the model (multi-exponential form) did not seem to explain the results well. It was not used in this case, thus

it was set to 0.
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a± b =

(
bL +

bU − bL
2

)
± bU − bL

2
(5.37)

We then can modify the standard normal distribution (X) to obtain the needed distribu-

tion Y ∼ N(a, b2), which will be symmetric and centered between the parameter bounds.

Its mean will be:

E(Y ) = E(a+ bX) = E(a) + E(bX) = a+ bE(X) = a (5.38)

and its variance will be:

Var(Y ) = Var(a+ bX) = Var(a) + Var(bX) = b2 Var(X) = b2 (5.39)

Thus, for setting the bounds to ±108 for parameter m, we yield a = 0 and b = 108, thus

the third line (bounds for m), as seen above, will read:

0+10^16*rand(1) −10^8 10^8;... % m

The data option is set to "full", meaning that the the frequency spectrum is calculated

from the entire dataset (using a rectangular window), while 2% and 10% of the data are

removed from the beggining and end of the frequency spectrum, respectively.

4. Obtain parameter estimates for m, σ0 and ζ via the simulated annealing algorithm . The

algorithm options can be seen below:

options = saoptimset('InitialTemperature', 1000,'ReannealInterval',80,...

'AnnealingFcn', @annealingfast,'TolFun',1e−1,'ObjectiveLimit',1e−2);

These options are explained as follows: Option InitialTemperature provides the initial

temperature to the algorithm. Option ReannealInterval resets the temperature to a higher

value (in order to escape local minima) within a set time. Option AnnealingFcn speci�es
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the type of probability function to use. Option TolFun will stop the algorithm if the

average change in function evaluations is smaller than the function tolerance. Option

ObjectiveLimit will stop the algorithm if the objective function value is equal or less than

that.

5. Iterate through step 4, 30 times. Save values in matrix Amnp, where m denotes number

of parameters, n denotes number of de�ections, p denotes iteration number.

6. Obtain mean of Amnp along dimension p, thus reducing it to Amn.

7. Plot m, σ0 and ζ vs. longitudinal surface stress.

5.1.3 Overview of class BarkhausenSignal

The class BarkhausenSignal stores and operates on a single Barkhausen time-series, of arbi-

trary number of cycles, excitation frequency and �eld, and sampling frequency. This class was

designed primarily to organize waveform statistics hierarchically. The aforementioned proper-

ties need to be speci�ed upon calling the class constructor, along with the path to the .txt �le

containing the time series. After an instance of the class is created, a number of statistics, such

as envelope, envelope peak, pulse height distribution, power and RMS, as well as frequency

spectrum are automatically calculated and ready to be visualized. In addition, the user can

also call a function to �lter the time series using �lters of di�erent impulse responses. Upon

calling this function, the aforementioned signal properties are re-calculated and stored in di�er-

ent variables, which allows the user to easily go back and compare �ltered to un�ltered results.

This functionality is implemented by the following class methods:

ComputeEnvelope

Computes the envelope for either the raw signal, ensemble average of the signal, or pro-

cessed (�ltered) version of the ensemble average.

ComputeAverage

Computes the ensemble average of the signal over N cycles.



www.manaraa.com

81

ComputePeakStats

Computes the peak values from the envelope of either the raw signal, ensemble average of

the signal, or processed (�ltered) version of the ensemble average.

ComputeFFT

Computes the FFT for either either the raw signal, ensemble average of the signal, or

processed (�ltered) version of the ensemble average.

ComputeWindowedFFT

Computes the windowed FFT (using a Hamming window) for either the ensemble average

of the signal, or processed (�ltered) version of the ensemble average.

ComputeRMS

Computes the signal RMS for either the ensemble average of the signal, or processed

(�ltered) version of the ensemble average

ComputePower

Computes the signal power for either the ensemble average of the signal, or processed

(�ltered) version of the ensemble average.

ComputePHD

Computes the pulse height distribution of the time domain signal.

BandPassFilter

Band-pass �lters the raw signal given the �ltering parameters.

HighPassFilter

High-pass �lters the raw signal given the �ltering parameters.

ExponentialFilter

Filters the raw signal using a �lter of decaying exponential frequency response.
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5.1.4 Overview of class BarkhausenExperiment

In addition to the class BarkhausenSignal, which was designed to store a single time-series,

a separate class was written, BarkhausenExperiment, which can be used to analyze multiple

measurements simultaneously. It uses the concept of an object array, in that every instance of

class BarkhausenExperiment contains an array of BarkhausenSignal objects. This class facili-

tates analysis of controlled experiments, where the objective is to observe the change of a state

variable in response to some control variable. To construct an instance of class BarkhausenEx-

periment, it is necessary to provide the values for the control variable. This could be uniaxial

stress, magnitude of bending, or even a microstructural parameter, such as grain size. The

number of measurements, which is another input, has to be equal to the times the control

variable was varied, while the number of measurement trials represents how many times each

measurement was repeated. It is imperative that the number of trials, cycles in each time series,

excitation frequency and �eld, as well as sampling frequency are the same for all measurements

in one instance of BarkhausenExperiment, such that the control variable is the only independent

variable.

Using this class, one is able to carry out signal processing operations on multiple Barkhausen

waveforms at once. This could be the �ltering of an entire set of measurements and plotting

the mean peak value, or pulse height distribution, versus stress. For certain statistics (such as

RMS and peak value) it is also possible to plot con�dence intervals.

A function central to this class is the implementation of the simulated annealing algorithm.

The function can be called from an external script that iterates through the parameter of interest

(such as depth), running the simulated annealing algorithm with a di�erent input each time.

The end result can be a plot of �tted parameter (such as V1) versus depth (computational

control parameter), for di�erent values of stress (experimental control parameter).

LoadDataFiles

Individually loads all the speci�ed time series into an object array. For example, an

experiment consisting of 18 measurements of 5 trials each, would be loaded as 90 distinct

time series.
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LoadAverageDataFiles

Loads the speci�ed time series, and computes the ensemble average (in the time domain

and frequency domain separately), for each measurement. For example, an experiment

consisting of 18 measurements of 5 trials each, would be loaded as 18 distinct time series

representing ensemble averages.

PopulateExpStats

Computes statistical parameters (mean and standard deviation) of time domain proper-

ties.

HighPassFilter

High-pass �lters all measurements at once, using the speci�ed �lter characteristics.

FitOneLayerModel

Fits the one layer model to all measurements and returns a matrix with parameter esti-

mates.

FitTwoLayerModel

Fits the two layer model to all measurements and returns a matrix with parameter esti-

mates.

PlotOptimResults

Plots the optimization results.

Plot

Plots time- and frequency-domain statistics versus control parameter, for all measure-

ments.

5.2 Measurement and instrumentation tools

While the signal processing operations were performed within the MATLABrprogramming

environment, the hardware interfacing and signal acquisition was accomplished using LabVIEW

r(National Instruments, Austin, TX, USA). LabVIEW (Laboratory Virtual Instrument Engi-

neering Workbench) is a development environment which is commonly used for system design.
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The programming language that LabVIEW uses, "G", is a data�ow programming language,

where code execution happens from left to right, and is routed virtual wires, or nodes, which

serves as connections between functional blocks. The built-in ability of parallel processing, mul-

tiplexing and interfacing with a multitude of commercial instrumentation are the main strengths

of LabVIEW.

A typical subroutine is termed a VI. A VI encompasses a front-panel, which serves as a

graphical user interface. This contains indicators (which monitor results) and controls (which

allow the user to input information). The VI also encompasses a block diagram, which contains

the source code; controls and indicators on the front panel appear as source and sink terminals

on the block diagram, respectively. A VI can be run as a stand-alone entity (as it contains a

user interface), or used as a subroutine in the block diagram of another program, with input

and output connections de�ned by the connector pane.

While for very simple acquisition and visualization operations LabVIEW code is easy to

create and maintain, for larger and more complicated projects programs quickly become messy

and unreadable. This is especially true if best programming practices are not followed. This is

why the functional requirements of the software were examined carefully, in order to use specify

a suitable software architecture and employ the minimum amount of complexity needed. The

software was built on a state machine architecture, which is ideal for acquiring a �nite number

of samples (as opposed to continuous measurement). After an signal acquisition is performed,

the acquired data is sent to a MathScript node that invokes MATLAB, which then performs

the signal processing using the class Inputsignal.m which was written speci�cally for interaction

with LabVIEW, and which was the basis of class BarkhausenSignal.m. Subsequently, the results

are returned and visualized in LabVIEW. In this way, the software was broken down into two

separate entities, making use of the bene�ts of both programming environments, and keeping

complexity to a minimum.

In the state machine architecture, the basic block diagram (LabVIEW code) is a while

loop (which loops inde�nitely until the user terminates it) containing a case structure which is

controlled by buttons on the graphical user interface and executes functions on demand. The

software can perform the following main functions:
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� �Acquire� button: Acquires a measurement, and automatically saves a MATLAB (.mat)

�le on location `C:/temp/acquiredSignal', with �le name equal to the measurement ID

displayed in entry on left of table.

� �Save� button: Saves the current Barkhausen measurement in .mat (MATLAB) format

at the location speci�ed by the user. The user has the option to select any measurement

from the table by clicking on the measurements from the table

� �Load� button : Loads a previously saved (measurement �le) .mat �le into the current

session.

� �Clear� button: Clears every measurement from the tables and also the graphs from the

front panel.

� �Analyze� button: Filters an existing measurement according to selected high-pass cuto�

frequency in the settings panel. To use this function, open the settings panel (see next

sections) and change to the desired cuto� frequency. Then click OK. To analyze using

the newly selected settings, simply click on the �Analyze� button. The peak amplitude

and other statistics of the measurement should now change, and this change can be seen

in the statistics table on the last tab.

� �Copy Graph� button: Copies the currently opened graph in .bmp format and saves it in

�le location speci�ed by the user.

� �Export� button: Exports the present measurement data into a .txt format (containing

the data along with the acquisition settings) in the �le location speci�ed by the user.

� �Exit� button : Stops the currently running VI.
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Figure 5.2: Custom designed and built measurement system enclosed in instrument case.
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Figure 5.4: Settings pane on custom acquisition software.

Figure 5.5: Raw signals acquired using the custom acquisition software.
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Figure 5.6: Barkhausen signal obtained after �ltering the raw dB/dt signal, using the custom
acquisition software.

Figure 5.7: Frequency spectrum of Barkhausen signal displayed in Fig. 5.6, obtained using the
custom acquisition software.
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CHAPTER 6. RESULTS AND ANALYSIS

6.1 Excitation amplitude - frequency sweep analysis

From the excitation - frequency sweep it is possible to obtain additional information which

can help decide under which settings the subsequent measurements can be performed. Fig. 6.1

shows the RMS Barkhausen noise amplitude as a function of excitation voltage and frequency.

The Barkhausen voltage V (t) is proportional to time derivative of the �ux crossing the

cross-sectional area of the sensing coil dΦ(t)/dt. Assuming that the dΦ(t)/dt waveform is not

saturated, meaning there are no harmonic components, we can write

V (t) ∝ −dΦ(t)

dt
∝ −ωΦej(ωt+φ) (6.1)

Therefore, to obtain the �ux crossing the coil, we can simply scale V (ω) by 1/f , where f = ω/2π.

This will rule out Faraday's law contribution to the signal and will reveal how he frequency

a�ects the depth of penetration. Clearly, from examination of Fig. 6.2 it is obvious that

increasing the frequency decreases the amount of �ux crossing the coil, meaning that a smaller

volume of the sample is excited due to the skin e�ect. Of course, from this plot it is not possible

to tell which depth signals originate from, but it provides a good qualitative validation of basic

physical principles that we expect to govern this process. Figure 6.2 shows V (ω) divided by

1/f .
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Figure 6.1: RMS Barkhausen noise amplitude as a function of excitation voltage and frequency,
for specimens of di�erent thickness. The bottom plot shows the coe�cient of variation within the
�rst four plots.
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Figure 6.2: RMS Barkhausen noise amplitude as a function of excitation voltage and frequency,
scaled by excitation frequency f , for specimens of di�erent thickness. The bottom plot shows the
coe�cient of variation within the �rst four plots.
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It is important to mention that the dΦ(t)/dt waveform is spectrally rich as it contains

contributions from dM(t)/dt (which contains the Barkhausen signal), therefore scaling V (t)

by ω assumes that the RMS Barkhausen is only a function of magnetizing frequency and that

magnetizing frequency simply scales the entire spectrum (at least within the range presented

here).

A way to make use of the multitude of information in Figs. 6.1 and 6.2 is by examining the

coe�cient of variability plot. The coe�cient of variation [57] is de�ned as the ratio of standard

deviation to the mean:

C.V. =

√
Var(X)

E(X)
(6.2)

The coe�cient of variation is useful in comparing random variables, as it is dimensionless. A

high C.V. indicates that the variability in the data is high, and that the associated measurements

may not be reliable. A quick look at the bottom plots of Figs. 6.1 and 6.2 shows that the latter

is true for low excitation voltages and especially at the lower end of excitation frequency. In

order to rule out e�ects of changing sample thickness as much as possible, a MATLAB code was

written, which searched for the point of minimum variability in the amplitude of the Barkhausen

signal in the time domain (as a function of both amplitude and frequency of excitation) and

reported the associated excitation parameters. By applying this code to the data of Figs. 6.1

and 6.2 it was found that the point with the least coe�cient of variation was at 3 V and 100 Hz.

While this result represents the data collected in the unstressed condition, it should also apply

to the stressed condition, since thickness is the only parameter that will signi�cantly a�ect the

coe�cient of variability at one point in the f-V plane.

Thus, given that the specimens are composed of the same material and in an unstressed state,

it means that at this measurement point one has isolated the e�ects of sample thickness on the

excitation signal. This allows one to proceed with applying stress while carrying out Barkhausen

measurements with these measurement settings. From this analysis, it was concluded that the

measurement settings which satisfy these above conditions were f = 100 Hz, and Vm = 3 V.

Measurements with these settings can thus be used in the frequency domain analysis, in order

to observe how the model parameters vary with stress.
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6.2 COMSOL Solid Mechanics Simulation Results

The results obtained from the COMSOL solid mechanics simulation can be seen in the plots

of Figs. 6.3, 6.4, 6.5, and 6.6. In order to compare the above results on an equal basis, ∂σ/∂x

for each stress-depth pro�le was calculated, and plotted against surface stress. As can be seen

from Fig. 6.7, in the case of the 1 mm specimen it is possible to achieve a steep stress-depth

gradient over a small range of stress magnitudes. In the case of the 4 mm specimen, to achieve

a steep gradient one has to achieve a signi�cantly higher surface stress. Thus, more work is

required to achieve the same gradient in a thick specimen than in a thin one. This distinction

will prove useful in calibrating the Barkhausen data.
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Figure 6.3: (a) Geometry of deformed specimen, showing the longitudinal stress at a displacement
of 1.2 mm, and (b) stress-depth pro�le along geometrical center for the 1 mm thick specimen.
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Figure 6.4: (a) Geometry of deformed specimen, showing the longitudinal stress at a displacement
of 1.2 mm, and (b) stress-depth pro�le along geometrical center for the 2 mm thick specimen.
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Figure 6.5: (a) Geometry of deformed specimen, showing the longitudinal stress at a displacement
of 1.2 mm, and (b) stress-depth pro�le along geometrical center for the 3 mm thick specimen.
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Figure 6.6: (a) Geometry of deformed specimen, showing the longitudinal stress at a displacement
of 1.2 mm, and (b) stress-depth pro�le along geometrical center for the 4 mm thick specimen.
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Figure 6.7: Slopes of stress-depth pro�les ∂σ/∂x along geometrical center for specimens of all
thicknesses, plotted against surface stress.
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6.3 Experimental results and analysis

6.3.1 Time Domain
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Figure 6.8: Raw Barkhausen waveforms obtained from the 1 mm thick specimen, for di�erent
magnitudes of de�ection. The custom Barkhausen software is able to calculate ensemble average,
waveform envelope (red) and automatically display all waveforms in an experiment, for visual
comparison. As can be observed, the peak value increases with magnitude of de�ection.
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Figure 6.9: Raw Barkhausen waveforms obtained from the 1 mm thick specimen, for di�erent
magnitudes of de�ection. The custom Barkhausen software is able to calculate ensemble average,
waveform envelope (red) and automatically display all waveforms in an experiment, for visual
comparison. As can be observed, the peak value increases with magnitude of de�ection.
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Figure 6.10: Raw Barkhausen waveforms obtained from the 1 mm thick specimen, for di�erent
magnitudes of de�ection. The custom Barkhausen software is able to calculate ensemble average,
waveform envelope (red) and automatically display all waveforms in an experiment, for visual
comparison. As can be observed, the peak value increases with magnitude of de�ection.
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Figure 6.11: Raw Barkhausen waveforms obtained from the 1 mm thick specimen, for di�erent
magnitudes of de�ection. The custom Barkhausen software is able to calculate ensemble average,
waveform envelope (red) and automatically display all waveforms in an experiment, for visual
comparison. As can be observed, the peak value increases with magnitude of de�ection.
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6.3.1.1 Time Domain Statistics
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Figure 6.12: RMS voltage of (a) 1 mm, (b) 2 mm, (c) 3 mm, (d) 4 mm thick specimen.
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Figure 6.13: Peak voltage in the positive part of the magnetizing cycle for (a) 1 mm, (b) 2 mm,
(c) 3 mm, (d) 4 mm thick specimen.
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Figure 6.14: Peak voltage in the negative part of the magnetizing cycle for (a) 1 mm, (b) 2 mm,
(c) 3 mm, (d) 4 mm thick specimen.
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Figure 6.15: Position of peak voltage in the positive part of the magnetizing cycle for (a) 1 mm,
(b) 2 mm, (c) 3 mm, (d) 4 mm thick specimen.
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Figure 6.16: Position of peak voltage in the negative part of the magnetizing cycle for (a) 1 mm,
(b) 2 mm, (c) 3 mm, (d) 4 mm thick specimen.
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Figure 6.17: R.M.S. voltage for all specimens, plotted as a function of longitudinal surface stress.
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Figure 6.18: Peak voltage in the positive part of the magnetizing cycle, for all specimens, plotted
as a function of longitudinal surface stress.
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Figure 6.19: Peak voltage in the negative part of the magnetizing cycle, for all specimens, plotted
as a function of longitudinal surface stress.
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Figure 6.20: Peak position in the positive part of the magnetizing cycle, plotted as a function of
longitudinal surface stress.
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Figure 6.21: Peak position in the negative part of the magnetizing cycle, for all specimens, plotted
as a function of longitudinal surface stress.
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6.3.2 Frequency Domain
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Figure 6.22: Results of �tting parametersm, σ0 and ζ. The �gures (a), (b), (c), and (d) correspond
to the 1, 2, 3 and 4 mm specimens respectively. The marked outliers in (d) were not considered in
the �tting as they are above 200 MPa and approaching the plastic limit.
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6.3.3 Discussion

6.3.3.1 Time Domain

The plots of Fig. 6.12 indicate that on average, R.M.S. Barkhausen voltage increases with

tensile elastic stress in materials such as steel with positive magnetostriction. While the rate of

change of VRMS with stress, ∂VRMS/∂σ is approximately equal for all specimens, VRMS(σ = 0)

varies, �uctuating from 0.18 V to 0.2 V; there is no clear variation with sample thickness, at

least not a monotonic one. Given that a change in sample thickness brings about redistribution

of the magnetic �ux within the specimen, the excitation �eld at every di�erent point within the

sample may also change. The 1 mm specimen displays a higher Barkhausen amplitude, which

is possibly a result of constraining the same magnetic �ux to a smaller area, thereby increasing

the total �ux density �owing through that area, leading to more Barkhausen activity in that

volumetric region.

By layering all the curves on one plot (Fig. 6.17),and comparing the 1 mm and 4 mm

specimens, one can see that the Barkhausen amplitude in the region 0−150 MPa is di�erent for

σ = 0 but starts to converge as the magnitude of bending is increased. For thicker specimens,

the stress-depth gradient increases faster with bending magnitude, and since the RMS voltage

represents a combination of depths, the e�ect of increasing stress in sub-surface regions is also

seen.

Similar behaviour is observed in the plots of Figs. 6.13 and 6.14. An important observation

to make is that in Figs. 6.16 and 6.15 the peak position slightly varies, depending on which

part of the magnetizing cycle it occurs in. This can be explained by an asymmetry in the

magnetization loop, which is determined by the magnetization history of the material.

6.3.3.2 Frequency Domain

Fig. 6.23 indicates that even though the model for the Barkhausen frequency spectrum is

based on �rst order approximations, it follows a monotonic decreasing and asymptotic trend

with frequency, similar to the measured frequency spectrum. Fig. 6.22 indicates that the the

model has explanatory power, as the parameters change as a function of magnitude of bending.
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� σ0

The surface stress parameter σ0 is seen to increase with longitudinal surface stress, which

is expected in the case of all specimens. Even though the units of the two axes are the

same, this is because the scaling parameter a (of units V/Pa) has been omitted, and

assumed to be equal to 1.

� ζ

The parameter ζ follows a decreasing trend, which according to the model theory indicates

that the attenuation experienced by the Barkhausen emissions on their way to the surface

is decreased. This has been seen before in the case of the constant stress along depth, where

this parameter was not related to the permeability µ, but to an e�ective permeability µeff .

This is necessary, as previous results indicate that permeability increases with tensile stress

in a material with positive magnetostriction.

� m

The parameter m displays interesting behaviour. As mentioned before, m should be

proportional to the stress-depth gradient and should therefore be negative, with increasing

magnitude in the negative direction as a result of a bending moment being applied to

the specimen. However, obtaining strictly negative values m with trends whose slopes

correspond to Fig. 6.7 would be a matter of calibration, as it is the case with most

Barkhausen parameters. However, this is thought to be a calibration issue; the desired

feature is a monotonic variation in the slope ofm vs. bending magnitude (or surface stress,

its normalized equivalent). The slope of the trend changes signi�cantly with changing

specimen thickness; it goes from positive for the 1 mm specimen, to negative for the 4

mm specimen.

An important matter to note is the parameter bounds. These, if changed, can produce

di�erent results; this is a result of the system not being uniquely constrained. Actually, it is

rarely the case that physical systems have unique solutions. It is necessary to manually constrain

the solution using speci�c parameter bounds, since there may be no unique solution.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

In this research, we developed a new model and signal processing technique to extract

depth-dependent stress information from magnetic materials, by interpreting the information

contained in Barkhausen signals. The ability of the model to extract depth-dependent infor-

mation has been demonstrated by developing a parametric model that describes the frequency

spectrum of Barkhausen emissions, as measured by an inductive Barkhausen sensor.

In the initial approach to the problem, a time-frequency method was developed [48, 49],

where frequency- and time-domain data was used interchangeably to extract depth-dependent

stress information. More speci�cally, the measured voltage signals were high-pass �ltered at

di�erent cuto� frequencies in order to isolate the emissions in di�erent volumetric regions within

the specimen, followed by envelope peak detection in order to correlate the amplitude of those

emissions with stress. The structure of the model implied the use of time domain statistics

(peak), which made necessary the assumption that sharp cuto� of a signal occurs at the skin

depth; the latter, combined with the inability to construct a universal stress-voltage calibration

curve for all depths, partly invalidated the model and steered the research into a di�erent

direction, in which only frequency domain information was used.

The �rst stage of development of the frequency domain model focused on describing the

Barkhausen frequency spectrum of a uniaxially stressed specimen [58]. Two stress-related pa-

rameters were used to express the Barkhausen frequency spectrum integrated over a depth range

below the surface. The results showed correlation between stress and these two parameters, of

which one is proportional to average Barkhausen activity at each in�nitesimal depth, and the

other controls the decay of the spectrum with frequency. This model, having the ability to

describe uniaxial stress (the longitudinal component of which remains constant as depth is tra-

versed) in the frequency domain can be used as a calibration for evaluating the stress-depth
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gradient.

The second stage of development of the frequency domain model focused on describing the

Barkhausen frequency spectrum of specimens with stress-depth gradients. In this case, three

stress-related parameters (two of which were incorporated in the previous model) were used to

express the Barkhausen frequency spectrum integrated over a depth range below the surface.

The new parameter was used to describe the slope of the stress-depth gradient. The results

showed correlation between stress due to bending (which induced a linear stress-depth gradient)

and the three model parameters.

Since this is an interdisciplinary research, future work may follow di�erent routes. Also,

the same interdisciplinary nature of the present work prevented delving very deeply into some

aspects. While certain ideas were explored, they were not deemed to be a priority and their

in-depth analysis was discontinued shortly after their inception. Of course, they may become

part of future research; for this reason, they are being presented in the following list, as well as

in the Appendix.

� From the materials viewpoint, a steel with higher magnetostriction would possibly increase

the quality of �t of the slopes seen in Fig. 6.22, as more Barkhausen activity would occur

for the same magnitude of bending, leading to a higher signal-to-noise ratio.

� From the measurement viewpoint, an important contribution to the measured spectrum is

the sensor frequency response. While the sensor is perceived as a constant when conduct-

ing a set of measurements, its frequency spectrum is nevertheless part of the measurement,

such that the total measured spectrum is a linear combination of the Barkhausen spec-

trum originating in the material, and the frequency spectrum of the Barkhausen noise

originating in the sensing ferrite itself as well as some resonance due to sensing coil, which

is essentially the LRC circuit:

Vmeas(ω) = VMBN,material(ω) + VMBN,sensor(ω) + Vcircuit(ω) (7.1)

A more in depth analysis of the sensor frequency response is presented in the Appendix.
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� Another possibility, relating to the measurement, would be a sensor array con�guration,

where measurements are conducted by an array of sensors in response to excitation by a

single electromagnet. In other applications, such as ultrasonics, the deterministic nature

of signals allows the exploitation of the signal phase to spatially locate defects within

a material (i.e. phased arrays). The present Barkhausen model can be extended to

incorporate a phase parameter, which implies there the phase velocity is a function of

frequency, giving rise to dispersion.

� It would be interesting to explore the problem from a linear algebra perspective, where a

system of linear equations Ax = b is set up to represent the problem. This would provide

more insight in terms of when the linear system yields no solution, one solution, or in�nite

solutions. This is partly explored in the Appendix.
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APPENDIX A. ADDITIONAL MATERIAL

Estimating the sensor circuit frequency response

The objective of this secton is to provide a framework for estimating frequency response of

an inductive sensor that is used for Barkhausen measurements. The transfer function includes

the sensing coil circuit in combination with the transmission line.

� Coil circuit:

The band of the Barkhausen frequency spectrum we are interested in measuring, does

not extend beyond 2 MHz. This range is well below the series resonant frequency (where

XL = XC) for most inductors, so the three element inductor models of Fig. A.1 should

su�ce. The equivalent circuit for an inductor with an initial current through it, is a series

voltage source, as in Fig. A.2. This is our model of the Barkhausen sensor.

C

R

L

(a) (b)

C
L

Rp

Rs

Figure A.1: Equivalent circuits for inductors, including parasitic resistance and capacitance. (a)
Circuit for inductor with ferromagnetic core, with resistance Rp accounting for the hysteretic loss
component. (b) Circuit for air-core inductor.

C

L

Rp
Rs

Figure A.2: Equivalent circuit for Barkhausen sensor.

The following conventions will be used:
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XL = ωL (A.1)

and

XC =
1

ωC
(A.2)

The transfer function (Vo/Vi) will be:

Vo
Vi

=

−jXCRp
Rp−jXC

Rs + jXL − jXCRp
Rp−jXC

(A.3)

An LCR meter can be used to characterize the sensor circuit. There are two modes of

impedance measurement, one for series and one for parallel equivalent circuits, as depicted

in Fig. A.3. Since we are operating within RF frequencies, but below 100 MHz, the

medium impedance case applies best, as seen in Fig. A.4, such that the parallel circuit

model can be used, as previously stated.

Cp

L Rs

Rp (G)

Rs

L
| Z|

Frequency

Series (Low | Z| ) Parallel (High| Z| )

Rp

Low Z

High Z

Log f

Log | Z|

s

Ls-Rs

L

Rp(G)

Lp-Rp

Figure A.3: Equivalent circuits for inductor LCR measurement [59].

1k 100k

Low Z Medium Z High Z

Series

Parallel

Figure A.4: Impedance criteria [59].
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The input impedance will be equal to

Zin =
(Rs + jXL)

(
−jXCRp
Rp−jXC

)
Rs + jXL − −jXCRpRp−jXC

(A.4)

And the input admittance is de�ned as

Yin =
1

Zin
= G+ jB (A.5)

The input admittance can be measured by using an LCR meter. The latter should be set

to parallel mode. The auto balancing bridge method should be used [59]. After having

measured the admittance, individual circuit component values can be deduced by using

the relationships in Fig. A.5. Note that in the parallel case, sometimes Rs is taken to be

zero.

Series mode Parallel mode

| Z|  =√Rs2+ Xs2 | Y|  =√Gp2+ Bp2

q = tan–1(Xs/ Rs) q= tan–1(Bp/ Gp)

Rs: Series resistance Gp: Parallel conductance (= 1/ Rp)
Xs: Series reactance (XL =wLs, XC = –1/ (wCs)) Bp: Parallel susceptance (BC =wCp, BL = –1/ (wLp))
Ls: Series inductance (= XL/ w) Lp: Parallel inductance (= –1/ (wBL))
Cs: Series capacitance (= –1/ (wXC)) Cp: Parallel capacitance (= BC/ w)
D: Dissipation factor (= Rs/ Xs = Rs/ (wLs) orwCsRs) D: Dissipation factor (= Gp/ Bp = Gp/ (wCp)
Q: Quality factor (= Xs/ Rs =wLs/ Rs or 1/ (wCsRs)) = 1/ (wCpRp) orwLpGp =wLp/ Rp)

Q: Quality factor (= Bp/ Gp =wCp/ Gp
=wCpRp or 1/ (wLpGp) = Rp/ (wLp))

Gp

±jBp

Rs ±jXs

Figure A.5: De�nitions of impedance parameters for series and parallel modes [59].

After component values have been calculated at multiple frequencies between ∼ 10 kHz

and 2 MHz, provided that in this range they remain relatively constant, they can be

substituted into (A.3) and the frequency response of the sensor circuit can be plotted.



www.manaraa.com

123

� Transmission line circuit:

The equivalent circuit of a twisted pair wire transmission line is usually modelled as in

Fig. A.6:

Figure A.6: Transmission line equivalent circuit [60].

The quantities R, L, C and G are per unit length, since the above model is a lumped

representation. By inspection of the cable datasheet, these quantities can be obtained.

� Loading circuit:

In the case of the Stresstechrdevice, it is not possible to easily obtain this information,

as the technology is proprietary. For our custom made Barkhausen measurement system

however, it is easier to obtain this information. More speci�cally, the NI X-series 6366

device, which digitizes the Barkhausen signal, has an input impedance of 100 GΩ in

parallel with a 10 pF capacitance, from AI+ to ground, and the same from AI- to ground

(information obtained from the NI X-Series 6366 manual). In di�erential mode, the input

impedance is approximately Z/2.

It can be seen that obtaining the "true" frequency spectrum of the Barkhausen emissions,

meaning the spectrum of the Barkhausen activity after accounting for measurement artifacts, is

non-trivial. However, in this research it was assumed that as long as the measurement system

remains a constant, knowledge of the exact frequency spectrum of the system is not crucial.
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Separating emissions emanating from N discrete depths

This section takes a linear algebra approach to the inverse problem of separating Barkhausen

spectra, by beggining with a very simple model. To start o�, we will assume that Barkhausen

emissions occur at two discrete distances from the point of measurement, x1 and x2. Assuming

�at emission spectra at the origin (white noise), the resulting frequency spectrum at the point

of measurement will be

Vt(ω) = V1f(x1, ω) + V2f(x2, ω) (A.6)

where f(x, ω) = e−ζx
√
ω. If x1 and x2 are known, and we are considering only two frequencies

in the spectrum, a system of linear equations can be set up in order to determine V1 and V2,

such that

Vt(ω) = V1f(x1, ω) + V2f(x2, ω) (A.7)

 Vt(1)

Vt(2)

 =

f(x1, 1) f(x2, 1)

f(x1, 2) f(x2, 2)


 V1

V2

 , (A.8)

in which system

∣∣∣∣∣∣∣
f(x1, 1) f(x2, 1)

f(x1, 2) f(x2, 2)

∣∣∣∣∣∣∣ = (e−ζx1e−ζx2
√

2)− (e−ζx1
√

2e−ζx2) 6= 0 (A.9)

meaning that the matrix is non-singular (and therefore invertible), such that

 V1

V2

 =

f(x1, 1) f(x2, 1)

f(x1, 2) f(x2, 2)


−1  Vt(1)

Vt(2)

 . (A.10)

For an arbitrary number of constituent spectra, the system of equations will be

Vt(ω) =
N∑
i=0

Vif(xi, ω) (A.11)

and the corresponding solution given by
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V1

V2

...

Vi


=



f(x1, 1) f(x2, 1) . . . f(xi, , 1)

f(x1, 2) f(x2, 2) . . . f(xi, 2)

...
...

. . .
...

f(x1, ωN ) f(x2, ωN ) . . . f(xi, ωN )



−1 

Vt(1)

Vt(2)

...

Vt(ωN )


(A.12)

where ωN is the Nyquist frequency. As long as there are N equations and N unknowns,

yielding an N × N coe�cient matrix, this system will have a unique solution. A simulation

was constructed to simulate white noise signals attenuated exponentially as they travel to the

surface. The procedure comprised of the following steps:

1. Simulation of exponentially attenuating white noise spectra, that add up at the point

of measurement to produce the measured spectrum. Variation of the amplitude of the

spectrum at the origin for each depth of emission, in order to simulate the e�ect of stress.

The simulation parameters can be seen in Table A.1.

2. Usage of the system of equations in (A.12) to calculate the spectrum amplitudes V1, V2, ..., Vi.

Table A.1: Simulation parameters

No. of discrete depths 5, 10 and 15

Separation 20 µm

ζ ∼ 13
√
SH/m

Vi pro�le Increasing amplitude (span of 10 V)

Start frequency 100 kHz

Stop frequency 1000 kHz

Frequency spacing 5, 10 and 15 linear steps

The result of the simulation can be seen in Figure A.7.



www.manaraa.com

126

0 5 10

x 10
5

0

5

10

15

20

25

30

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

V
)

Single and superimposed spectra

2 4
1

2

3

4

5  
System Matrix

Columns

 

R
o
w

s

0.2

0.4

0.6

0.8

1

1 2 3 4 5
−4

−2

0

2

4

6

8
x 10

−12

Curve number

E
rr

o
r 

(%
)

Error in recovering V
0

(a)

0 5 10

x 10
5

0

10

20

30

40

50

60

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

V
)

Single and superimposed spectra

5 10

2

4

6

8

10  
System Matrix

Columns

 

R
o
w

s

0.2

0.4

0.6

0.8

1

2 4 6 8 10
−2

0

2

4

6

8

10
x 10

−4

Curve number

E
rr

o
r 

(%
)

Error in recovering V
0

(b)

0 5 10

x 10
5

0

20

40

60

80

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

V
)

Single and superimposed spectra

5 10 15

2

4

6

8

10

12

14
 

System Matrix

Columns

 

R
o
w

s

0.2

0.4

0.6

0.8

1

5 10 15
−10

−5

0

5

x 10
9

Curve number

E
rr

o
r 

(%
)

Error in recovering V
0

(c)

Figure A.7: Simulation results for (a) 5, (b) 10 and (c) 15 overlapping spectra. As the number
of discrete depths is increased (and with it, the number of constituent spectra), the % error in
recovering the spectrum intercepts V0 increases. The matrix becomes singular and impossible to
invert (A.7c). This is possibly a result of numerical error, since the concept can be proven correct
for a smaller number of distinct curves.
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Solution for system with N depth spans, each from xi to xi+1

This approach is more realistic, since in practice Barkhausen emissions occur over depth

spans, and not just at in�nitesimal depths. Consider an array of discrete depths xi, and an

integral from xi to xi+1, as in Equation A.13:

f(xi, xi+1, ω) =
1

ζ
√
ω

(
e−ζxi

√
ω − e−ζxi+1

√
ω
)
, (A.13)

The magnitude of the Fourier transform, Vt(ω), of the signal at the surface of the specimen

can be described in terms of a sum of signals with spectra Vi(ω) emanating from di�erent layers:

Vt(ω) =
N∑
i=0

Vi(ω)f(xi, xi+1, ω) (A.14)

For simplicity, suppose that each layer is equally stressed (as in the tensile test) and the

spectra are independent of frequency, such that Vi(ω) = Vi and V1 = V2 = ... = VN = V . Then,

V =
Vt(ω)∑N

i=0 f(xi, xi+1, ω)
(A.15)

Since Vt(ω) can be experimentally measured, and we can evaluate f(xi, xi+1, ω) after substi-

tuting for xi, we can obtain V . This is pretty straightforward and can be used in a calibration

procedure where all layers are equally stressed.

However, in the case where V1 6= V2 6= ... 6= VN , the situation becomes more complicated.

We do not longer know how much each layer contributes to the measured spectrum, as is the

case with emissions from a discrete number of layers, where all layers are stressed to a di�erent

magnitude. Again, we can set up a system of simultaneous equations and solve the problem

numerically:



Vt(1)

Vt(2)

...

Vt(ωN )


=



f(x1, x2, 1) f(x2, x3, 1) . . . f(xi, xi+1, 1)

f(x1, x2, 2) f(x2, x3, 2) . . . f(xi, xi+1, 2)

...
...

. . .
...

f(x1, x2, ωN ) f(x2, x3, ωN ) . . . f(xi, xi+1, ωN )


×



V1

V2

. . .

Vi


(A.16)
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where the signal frequency spectrum at the origin V1, V2, ..., Vi is independent of frequency,

but can be also expressed as a function of frequency. Also, it is important to note that the

frequencies chosen do not necessarily have to be ascending in steps of one. In fact, it is more

robust to have them ascend in larger steps, such that a bigger span of frequencies is considered.

What is important is that the number of equations is equal to the number of unknowns. It is

good to summarize the assumptions taken in this approach:

� We assume that the spectrum shape is independent of stress. In previous work [33, 61, 62]

it is shown that the power spectrum shape and voltage distribution are dependent on

stress. A point the aforementioned references all have in common is that the analysis is

made in terms of what is measured at the surface. It is not obvious of how the spectra

add up to produce the spectrum at the surface, an issue to which the solution would be

central to solving the overall depth-pro�ling problem. According to Durin et al. [61],

stress a�ects the parameter v0 appearing in the expression for the voltage distribution:

P (v) ∼ v−(1−c)e−v/v0 , (A.17)

where c is a dimensionless parameter proportional to the magnetizing �eld rate. Jagadish

et al. [33] present power spectra that change with stress, but their shape does not seem

to change with stress.

� Although the permeability is a function of stress, we assume that the attenuation constant

ζ resposible for preferential attenuation of the emission spectra (which is dependent on

permeability) is independent of stress. This assumption is essential, otherwise the solution

would have to contain a number of unknown terms and would make the problem highly

non-linear and di�cult to solve.

� We assume that the signal is real (not complex), and therefore does not contain phase

information. This greatly simpli�es the analysis procedure. We treat the signal only in

terms of attenuation in amplitude and we ignore dispersive e�ects. Ignoring the phase is

a reasonable assumption, since all Barkhausen events occur randomly.
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A simulation was constructed, to simulate white noise signals attenuated exponentially as

they travel to the surface. The procedure comprised of the following steps:

1. Simulation of exponentially attenuating white noise spectra emanating from a span of

depths that add up at the surface to produce the measured spectrum. Vary the amplitude

of the spectrum at the origin for each layer, to simulate the e�ect of stress. The simulation

parameters can be seen in Table A.1.

2. Use the system of equations in (A.16) to calculate the spectrum amplitudes V1, V2, ..., Vi.

Table A.2: Simulation parameters

No. of layers 5, 10 and 15

Separation 20 µm

ζ ∼ 13
√
SH/m

Vi pro�le Increasing amplitude (span of 10 V)

Start frequency 100 kHz

Stop frequency 1000 kHz

Frequency spacing 5, 10 and 15 linear steps

The result of the simulation can be seen in Figure A.8.
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Figure A.8: Simulation results for (a) 5, (a) 10 and (a) 15 overlapping spectra. As the number of
layers is increased (and with it, the number of constituent spectra), the % error in recovering the
spectrum intercepts V0 increases. The matrix becomes singular and impossible to invert (Figure
A.7c). This is possibly a result of numerical error, since the concept can be proven correct for a
smaller number of layers.
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Time-frequency domain simulation of Barkhausen noise

In this section, a "calibration" measurement is simulated (in which all layers are equally

stressed) in order to shed more light on whether some of our assumptions about the nature of

Barkhausen signals are valid.

Assumptions:

� Barkhausen information propagates in the form of plane waves and thus attenuates expo-

nentially with frequency and distance, such that the measured signal at the surface due

to one emission is

V = V0e
−ζ(σ)x (A.18)

where ζ is the absorption coe�cient and is dependent on stress (as it depends on perme-

ability) but assumed independent of frequency. In this treatment we ignore the phase of

emissions.

� The amplitude of the emission at the origin can be approximated as a dirac delta function

δ(t). In the frequency domain, this corresponds to a �at spectrum, which is also true for

white noise.

� The mean amplitude of emission at the origin, V0 is stress dependent. Also, µ is stress

dependent.

� The Barkhausen signal measured at the surface is a linear combination of Barkhausen

signals emanating from multiple volumetric regions within the specimen, such that

Vmeas(t) =
∑
i

Vti(ω) (A.19)

and

Vmeas(ω) =
∑
i

Vatti(ω) (A.20)



www.manaraa.com

132

where Vatti is the Barkhausen signal emanating from the ith layer, attenuated as it prop-

agates towards the surface. Also, Vatti can be obtained by integrating over a depth ∆x.

Vatti(ω) = Vorig

∫ (i+1)∆x

i∆x
e
−
√
ωµ(σ)

2ρ
x
dx (A.21)

It can be shown, that in the limit of ω → 0, the equation of 3.29 converges to Vorigx,

validating our assumption that the signal is a linear combination of signals coming from

all depths:

lim
ω→0

Vatt = Vorig lim
ω→0

(
1− e−ζ

√
ωx

ζ
√
ω

)
(A.22)

= Vorig lim
ω→0

(
d
dω (1− e−ζ

√
ωx)

d
dω (ζ
√
ω)

)
(A.23)

= Vorigx (A.24)

� The signals corresponding to each layer are statistically independent from each other

(hence the simple summation to yield the measured signal at the surface).

� The applied �eld has a low enough frequency, such that it can be essentially considered

constant over the volumetric region that we are considering. In fact, a wave of frequency

100 Hz will have a skin depth of approx. 2.8 mm in a material of permeability 70 and

conductivity 4.5 MS/m. The maximum analysis depth of 0.1 mm corresponds to approx

3.6% of that.

� The Barkhausen frequency spectrum can be described by white noise at the point of its

origin. This implies that that past and future points in the time series are statistically

uncorrelated. Physically, this implies that the local magnetization state being independent

from neighbouring regions (i.e. only short range correlations exist).
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Figure A.9: Permeability-stress relationship that was used as an input to the model.

Method:

� The stress-dependent JA model was used to produce an M − H hysteresis loop. From

that, the susceptibility was given a time dependence by specifying a an applied �eld rate

dH/dt:

χ′(t) =
dM(σ)

dH
=
dM(σ)

dt

dt

dH
(A.25)

The selection of certain hysteresis and magnetostrictive parameters resulted in the permeability-

stress relationship seen in Fig. A.9.

� A white noise signal W (t) was modulated by the di�. susceptibility in the time domain,

to produce the signal that corresponds to the ith layer (Fig. A.10):

Vorigi(t) = χ′i(t)W (t) =
dM(σi)

dH
W (t) (A.26)

� To simulate the e�ect of the material on the propagation of Barkhausen emissions origi-

nating in each discrete depth i∆x, the signals were convolved with the impulse response

hi(t) of the material (which depends on permeability and therefore stress), such that the

measured voltage at the surface can be expressed as
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Figure A.10: Simulated waveforms at the origin of each layer, for all 5 layers, when all of them
are stressed equally (250 MPa). Note that the arti�cially high amplitude ensures that no signi�cant
errors due to rounding occur later on (the waveform was multiplied by an ampli�cation constant).
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Figure A.11: Simulated waveforms at the surface, for all 5 layers, when all of them are stressed
equally (0 MPa). The most attenuated one is the one corresponding to the �fth layer, situated
deeper in the specimen. The apparent shift in the peak position is due to the �lter's phase response
which causes a phase shift (it looks like the coercive �eld is changing).

Vmeas(t) =
∑
i

Vatti(t)

=
∑
i

Vorigi(t) ∗ hi(t)

=

∫ t

−∞

∑
i

Vorigi(t) δ
(
t− ζ(σ)(i∆x)

)
dt

where ζ(σ) is the propagation constant introduced previously, which causes attenuation

of the signal with frequency and distance. The mean depth of each layer was used as

an input to the �lter. Figure A.11 shows what happens to the waveforms when they are

attenuated by the �lter.

� A total of 5 distinct stress magnitudes were used, with each surface measurement waveform

containing a total of 5 layer contributions. The resulting waveforms were saved on disk,
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for later use.

� The resulting surface waveforms were loaded from �le into memory, and into a custom writ-

ten software module, which facilitates the loading and analysis of a series of Barkhausen

measurements. The loaded surface waveforms can be seen in Figure A.12.

A windowed FFT of the signals near the coercive point was taken and a smoothing op-

eration was performed to reduce random noise. Finally, the model equation of 3.29 was

�tted to the data. An example spectrum can be seen in Fig. A.13.

The �t of the Barkhausen spectra (obtained by taking the FFT of the simulated wave-

forms) to the model can be seen in Fig. A.14. Results of parameter extraction can be

seen in Figs. A.15 and A.16.
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Figure A.12: Simulated waveforms at the surface, for all stresses, in ascending order (0 − 250
MPa). When the waveforms are loaded, they are multiplied by a factor of 10−3. The routine was
originally coded like that to convert V to mV for data imported from the Stresstech Rollscan.
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Figure A.13: FFT of simulated Barkhausen waveform, with smoothed spectrum. In �tting the
model, only the mid- to high-frequency range was used, as the low-frequency range contains artifacts
from the �lter.

1 2 3 4 5 6 7 8 9 10 11

x 10
5

0.01

0.015

0.02

0.025

Frequency

A
m

p
lit

u
d
e

 

 

mur = 89, stress=0

mur = 89, stress=0

mur = 116, stress=125 MPa

mur = 116, stress=125 MPa

mur = 152, stress=250 MPa
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Figure A.15: Parameter V0, extracted from the �t to the model. For some reason, the parameter
is seen to decrease with stress, when it should be increasing. This must be investigated further.
Note that there is an outlier at 50 MPa.
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Figure A.16: Parameter ζ, extracted from the �t to the model. For the most part, the parameter
is seen to increase with stress, suggesting that permeability is increasing with stress, which is what
was the input to the model.
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Experimental Verification of the Linear Relationship Between Stress and
the Reciprocal of the Peak Barkhausen Voltage in ASTM A36 Steel

O. Kypris , I. C. Nlebedim , and D. C. Jiles , Fellow, IEEE

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 USA
Ames Laboratory, US DOE, Ames, IA 50011 USA

This study presents an experimental validation of a model theory for determining the relationship between a nondestructive measure-
ment parameter and a property of interest. It was found that the reciprocal of the peak envelope amplitude of the Barkhausen emission
voltage follows a linear relationship with stress. A linear relationship between stress and the reciprocal of the root mean square voltage
was also obtained. These observations represent an important step towards improving the use of Barkhausen signals for magnetic non-
destructive evaluation of stress as a function of depth in ferromagnetic load bearing structures.

Index Terms—Barkhausen effect, magnetic Barkhausen noise, nondestructive evaluation, nondestructive testing, stress depth pro-
filing.

I. INTRODUCTION

D ISCONTINUOUS changes in magnetization result in
Barkhausen signals, which can be detected by a search

coil on the surface of the material subject to magnetization. The
Barkhausen signal amplitude and spectrum varies depending
on the type of ferromagnetic material, the stress state, defect/in-
clusion sizes and microstructure [1]–[6]. Barkhausen signal
analysis is used as a tool for nondestructive evaluation for
assessing residual surface stresses in load-bearing components,
especially steel parts. However, the absence of an underlying
theory that describes the variation of a measurable Barkhausen
parameter (such as the voltage peak envelope amplitude)
with stress, has made the evaluation process until now highly
dependent on empirical data.
In general, it is accepted that for materials with positive mag-

netostriction, the peak amplitude of the Barkhausen signal in-
creases with applied tensile stress in the elastic region. In recent
research it was shown that under uniaxial tension the reciprocal
of the peak envelope amplitude of the magnetic Barkhausen
noise signal follows a linear relationship with stress

[7], [8]. This relationship resembles that of the anhysteretic
differential susceptibility at the origin with stress, as
presented by Garikepati et al. [9].
In previous studies [7]–[9], 32CDV13, SAE 9310, AISI 4130,

and RAEX400 steels were used. It is important to verify that the
relationship is more general and holds for steels of other com-
positions and properties. This study aims at validating the linear
relationship between and in A36 steel so that it can
later be incorporated into a technique for mapping stress as a
function of depth in ferromagnetic structures [10]. A36 steel is
widely used for load-bearing parts. It is elastic ( 200 GPa), it
exhibits high yield- and ultimate tensile strengths ( 250 MPa
and 450–550 MPa respectively), and it offers high perfor-
mance at minimum cost, which gives it important uses in many

Manuscript received November 05, 2012; accepted December 06, 2012. Date
of current version July 15, 2013. Corresponding author: O. Kypris (e-mail:
kypris@iastate.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMAG.2012.2234728

industries, including the construction, industrial, marine, trans-
port and military sectors.
In the present study, a uniaxial tensile test was conducted on

an A36 steel sample, while an inductive probe measured the
Barkhausen emissions corresponding to a range of stresses. The
waveform data were then analyzed using a customized Matlab
routine and the reciprocal of the peak envelope amplitude, as
well as the root mean square (RMS) of the magnetic Barkhausen
signal were plotted against the engineering stress.

II. THEORY

Garikepati et al. [9] presented an expression for the stress
dependence of the anhysteretic differential susceptibility at the
origin of the form

(1)

where is the saturation magnetization, is the coupling
coefficient that quantifies the strength of interaction between
neighbouring domains, is a magnetostrictive coefficient that
can be determined experimentally, is the permeability of free
space, and is the stress. This expression can be rewritten as

(2)

Likewise, at the coercive point so that there is a
simple relationship between the peak slope of the magnetization
curve and stress

(3)

In previous work [7], the voltage peak envelope amplitude
was observed to follow a similar trend with stress, and thus (3)
was modified to give

(4)

where is a scaled version of found in (3).

0018-9464/$31.00 © 2012 IEEE
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Fig. 1. Experimental setup, where (a) is the grip of the tensile test machine, (b)
is the A36 test specimen, (c) is the Barkhausen probe, and (d) is the clamp.

III. EXPERIMENTAL DETAILS

A. Uniaxial Tensile Test

A bar of hot rolled ASTM A36 steel was machined along
the rolling direction to produce an ASTM E8 standard “dog-
bone” specimen for tensile testing. The specimen has a thick-
ness of 6.5 mm, width of 12.7 mm and gauge length of 26.5
mm. It was subjected to uniaxial tension at a deformation rate of
3 mm/min, using an Instron 5969 tensile test machine. The spec-
imen was magnetized with a Barkhausen probe consisting of a
magnetizing coil wound around a ferritic C-core electromagnet
with cross-sectional area of 25.6 (8 mm 3.2 mm), and a
sensing coil wound around a ferritic cuboid with cross-sectional
area of 3.6 (3 mm 1.2 mm) positioned between the elec-
tromagnet poles, and picking up the perpendicular component
of the flux density from the specimen. The measurement was
paused every 1000 N of load, in order to collect Barkhausen
data along the direction of stress, with the probe positioned as
pictured in Fig. 1. The Barkhausen waveforms were measured
at a sampling rate of 2.5 MHz, while magnetizing the specimen
at a rate of 100 Hz with maximum applied magnetic field of
0.5 kA/m measured between the poles of the electromagnet. A
total of five equally spaced measurements were carried out for
each value of stress, with every trial containing 10 Barkhausen
bursts. Because the specimen underwent small amount of re-
laxation every time the tensile test was paused, to obtain the
Barkhausen signals the waveforms were averaged over that re-
laxation period and these were plotted against the stress.

B. Post-Processing

To analyze the Barkhausen data, a customized object-oriented
Matlab signal processing program was used. In order to only
consider the surface component of the Barkhausen emissions,
the waveforms were high-pass filtered at the frequency which
corresponds to a skin depth of 100 , using the well known
skin-depth relation

(5)

Fig. 2. Variation of the mean reciprocal peak envelope voltage amplitude with
applied uniaxial stress, plotted with 95% confidence intervals. The signals were
high-pass filtered such that the peak voltage corresponds to the average of the
Barkhausen emissions over the nearest 100 from the surface. From a linear
regression, , with an adjusted value of
0.9678.

where and are the dc resistivity and dc perme-
ability of the sample, and is the angular frequency
of the Barkhausen emission. A four-point dc conductivity
measurement and a quasi-static measurement preceded
the Barkhausen experiment, in order to obtain the values
needed to determine the high-pass cut-off frequency. During
the Barkhausen experiment, the specimen was not magnetically
saturated, thus the value of the differential permeability at the
coercive point was used.
In order to obtain the envelopes from the Barkhausen wave-

forms, a customized triangular moving average routine was
written in Matlab. It performs two successive simple moving
average calculations, such that the end result is smoother.
The envelope smoothness is defined by the combined number
of data points before and after the current data point. The
procedure used 2000 over a total number of 25 000 data points
contained in each magnetizing cycle. Using the calculated
envelopes, the peak amplitudes were calculated for both the
positive and negative parts of the magnetizing cycles, then
averaged to produce the mean. Calculation of the RMS values
was also performed.

IV. RESULTS AND DISCUSSION

Figs. 2 and 3 show the variation of the reciprocal peak en-
velope voltage and the reciprocal of the RMS voltage corre-
sponding to the first 100 of depth from the surface of the
specimen. At a relative permeability and resistivity

, 100 from the surface corresponds to
a cutoff frequency of 95 kHz. It can be seen that the result
obtained in the present study is in good agreement with the
model equation presented in (4). This is important because it
demonstrates the relationship between a nondestructive mea-
surement parameter (Barkhausen signal) and a property of in-
terest (stress). This result can be incorporated in a model proce-
dure for the depth profiling of stress using a frequency depen-
dent Barkhausen signal technique.
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Fig. 3. Variation of the mean reciprocal RMS voltage with applied uniaxial
stress, plotted with 95% confidence intervals. The signals were high-pass fil-
tered such that the RMS voltage corresponds to the average of the Barkhausen
emissions over the nearest 100 from the surface. From a linear regression,

, with an adjusted value of 0.9833.

Comparing both results, the variability of the quantity
is less than that of . This can be attributed

to the computational method used to obtain those quantities.
is a measure of a single point on the voltage envelope

curve and is more prone to localized voltage fluctuations,
which may be a result of fluctuations in the Barkhausen signal.
Furthermore, the smoothness of the voltage envelope curve
is highly dependent on the smoothing parameter, which is
determined heuristically. On the other hand, the computation of
the RMS voltage relies on a well-defined mathematical formula
which brings increased repeatability.
Furthermore, it is worth noting that a lower absolute value

of is observed in the peak data of Fig. 2 as compared to the
RMS data of Fig. 3. This suggests that the reciprocal of the
RMS voltage is more responsive to changes in stress. This can
be of use in practical stress detection applications, where high
sensitivity is vital.
Some of the variability in the voltage can also be accounted

for by the relaxation between successive Barkhausen measure-
ments, which reduced the Barkhausen signal amplitude as the
specimen relaxed. Overall, the fit of the experimental results to
the theoretical model was very good and this is a strong indica-
tion of the validity of the model. However, the consideration of
higher order terms in the relationship between magnetostriction
and magnetization may be considered in future work, to

account for any nonlinear variation in the experimental data.
An extension to the theory of ferromagnetic hysteresis can

be used to help explain the experimental result. In the elastic
region, a constant applied stress can be represented as an addi-
tional magnetic field term , which is a function of the mag-
netoelastic energy and the magnetization , such that

(6)

Assuming there are no transverse strains, the magnetoelastic en-
ergy due to stress is

(7)

where is the magnetostriction and is the angle between the
direction of magnetization and the direction of applied stress. In
general, low carbon steels exhibit reduced magnetocrystalline
anisotropy. In the presence of applied stress, the stress induced
anisotropy dominates. When the field is applied along the direc-
tion of stress, (6) reduces to

(8)

where is the stress amplitude. The magnetization is, in
strict terms, also a function of stress. However, at relatively
small applied stresses and fields, its dependence on stress can be
neglected. The initial region of the curve can therefore
be approximated as parabolic, with defined as a second-order
magnetostriction coefficient, such that . It can be
seen that the stress-equivalent field experienced by domains
varies linearly with stress, and by examination of Figs. 2 and
3, so does the reciprocal of the Barkhausen voltage. However,
since the Barkhausen signal contains stochastic components, the
parameter seen in (4) which is proportional to the slope of
the line, can only be determined experimentally. Qualitatively,
it will depend on the magnetizing frequency and amplitude of
the magnetizing field.
It should be noted that the linear relationship that can be es-

tablished in the low-field, low-stress region, does not hold as the
magnitude of stress is increased past the yield point of the ma-
terial. At the onset of plastic deformation, slip processes form
dislocations in the crystal lattice. These, in turn inhibit domain
wall motion by increasing the effective field that is needed for
domain walls to escape local energy minima and thus invali-
dating the assumption that the stress-induced anisotropy dom-
inates. Thus, in the plastic region the relationship given in (4)
may not hold. Nevertheless, for the purpose of this study which
focuses on the elastic region, the relationship is realistic as the
results show. Furthermore, the results of Garikepati et al. [9] ex-
perimentally verify that the linear relationship between the re-
ciprocal of the anhysteretic susceptibility at the origin and stress
also holds for compressive stress. It is therefore expected that
a linear relationship between the reciprocal of the Barkhausen
voltage and compressive stress should also hold. However, this
study focused on developing a linear calibration technique for
a stress-depth profiling method used to detect tensile stresses
in ferromagnetic structures in order to prevent catastrophic fail-
ures. The scope is thus limited to tensile stress, though in future
work compressive stresses will be studied.

V. CONCLUSION

In this work it was shown that the reciprocal of the
Barkhausen peak envelope voltage and the reciprocal RMS
voltage follow a linear relationship with stress in the elastic
region in ASTM A36 steel. This trend has been observed in
previous studies [7]–[9], on different types of steel. This stands
as an important result, as it provides a solid foundation for
developing a method to resolve the stress state of a ferro-
magnetic material via Barkhausen signal analysis. At present,
Barkhausen signal data are calibrated against x-ray diffraction
results, which makes the stress evaluation process expensive,
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time-consuming, and destructive. However, a linear relation-
ship between stress and a measurable parameter shown here
allows for rapid, on-site, in-service, nondestructive testing.
Once the strength of relationship between the reciprocal of the
Barkhausen peak voltage and engineering stress is obtained,
specimens of unknown stress state can be assessed without the
need to input x-ray diffraction data. The ability to calibrate
against a linear model lends great utility and can serve as a
basis for developing a frequency dependent model for the
stress-depth profiling of ferromagnetic structures [10].
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Mapping Stress as a Function of Depth at the Surface of Steel Structures
Using a Frequency Dependent Magnetic Barkhausen Noise Technique
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Profiling of stress as a function of depth is an important tool for nondestructive evaluation and can be used to prevent catastrophic
failures in structures. In this work, the underlying theory of a new model for the depth profiling of stress in ferromagnetic structures
based on the magnetic Barkhausen method is investigated and commented upon. In the model, a ferromagnetic structure is divided into
layers of different stress states. By analysis of the constituent equations it was found that the measured Barkhausen voltage increases
as the frequency span increases, for both the one- and the two layer cases. It was also found that two layers with the same amplitude of
Barkhausen emission at the origin can be approximated as one layer, provided that the upper and lower depths, as well as the frequency
range are identical.

Index Terms—Magnetic Barkhausen noise, nondestructive evaluation, stress depth profiling.

I. INTRODUCTION

B ARKHAUSEN emissions result from discontinuous,
irreversible changes in magnetization. The voltage in-

duced in a coil due to these discontinuities appears as a noise
signal, and is termed the Barkhausen effect. It is widely used
as a tool in nondestructive evaluation for determining the stress
state in the near surface regions of load bearing components.
The Barkhausen noise amplitude and spectrum vary depending
on the type of ferromagnetic material, the stress state, de-
fect/inclusion sizes and microstructure [1], [2]. In recent years
Barkhausen noise has been used for assessing residual stress
levels in steel structures [3], [4]. This is particularly useful
in applications where ferromagnetic materials, such as steels,
are used for load bearing parts. Studies have shown that the
process resulting in the emission of magnetic Barkhausen noise
is rather complex [5]–[7].
Recently it has been shown that the peak amplitude of the

voltage envelope of magnetic Barkhausen noise signals corre-
lated with the stress state of a ferromagnetic material [8]. How-
ever, profiling the depth dependence of stress using themagnetic
Barkhausen effect still remains a challenge. In previous work, a
model for stress depth profiling based on frequency- and depth
dependent eddy current damping of Barkhausen emissions was
presented , [9]. The present study provides an in-depth theoret-
ical analysis of the model equations, and the experimental pro-
cedures required to verify the model in future work. The aim is
to develop a method for mapping stress as a function of depth
in ferromagnetic structures.

II. THEORY

A. Overview of the Model

Assuming plane wave propagation, an electromagnetic emis-
sion of angular frequency originating at some depth

Manuscript received March 02, 2012; revised April 12, 2012; accepted April
17, 2012. Date of current version October 19, 2012. Corresponding author: O.
Kypris (e-mail: kypris@iastate.edu).
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in a material of conductivity and permeability undergoes
eddy-current damping, such that themeasured voltage at the sur-
face will be [10]

(1)

To simplify the analysis, the frequency spectrum of each
Barkhausen emission is assumed to have only one frequency
component. The quantity is the distance at which an electro-
magnetic signal is attenuated to of its original value due to
eddy current dissipation.
In order to graphically describe the model, an illustration of

the solution of the model equations is presented in Fig. 1. Con-
sider two different emissions of frequency MHz and

MHz (frequencies present in a typical Barkhausen
noise spectrum), which occur at depth and inside a spec-
imen of constant permeability and conductivity. The emission
of frequency will travel a distance before being attenu-
ated to of its initial amplitude. Its skin depth lies between
depths and , hence emission is considered to be present
in a Barkhausen measurement band-passed from to . As-
suming for the purposes of the analysis that complete attenu-
ation occurs over a propagation depth , the emission of fre-
quency will not be present in that measurement. However
the emission at frequency will be present in a measurement
band-passed from to .
For a given frequency, emissions originating from regions

deeper in the material will be attenuated more than emissions
originating from shallower regions. Consequently emissions of
relatively high frequency, originating from deep regions of the
specimen, do not reach the surface. Hence, it is possible to
identify the depth of emission by defining cut-off frequencies
for a measurement, which correspond to particular depths. It
is important to remember that emissions at frequency can
also originate in the region between and . This is because
Barkhausen emissions occur at all depths and over a range of
different frequencies. Hence, an emission measured at the sur-
face will therefore be a superposition of many different emis-
sions of the same frequency occurring at different depths. As a
result, to distinguish between the emissions at different depths

0018-9464/$31.00 © 2012 IEEE
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Fig. 1. Emissions of frequency MHz and MHz originating
at depths and inside a material of constant permeability and conductivity.
Attenuation occurs due to the skin effect described in (1). The model assumes a
sharp cutoff at , which allows setting cutoff depths to facilitate the separation
of emissions. As long as the skin depth of an emission falls between the upper
and lower cutoffs of a layer, it is detected within that layer. Attenuation of the
amplitude of emissions is represented by fading colour.

and construct a stress profile, (1) is not sufficient. This has been
taken into account in the model , [9].
The basic model considers two consecutive layers which have

different values of stress. In each of these layers stress is con-
sidered to be homogeneous. Barkhausen measurements at the
surface are band-pass filtered to retrieve two signals; one from
to , representing emissions from the first layer, and one

from to (where is smaller than ), representing emis-
sions from the combined first and second layers. Provided the
absolute value of stress in the first layer is known, a set of model
equations is used to calculate the stress in the second layer. The
signal coming from consecutive layers is found by varying the
low frequency cut-off and repeating the procedure. The fol-
lowing sections describe the model equations which apply to a
single uniformly stressed layer of material and two uniformly
stressed layers of material.

B. Magnetic Barkhausen Emissions From a Single, Uniformly
Stressed Layer

Consider a ferromagnetic slab of finite thickness, relative
magnetic permeability , electrical resistivity , and stress
as schematically shown in Fig. 2. If Barkhausen emissions of
frequency to occur from depth to depth into the
specimen, and assuming plane wave propagation as well as a
white noise spectrum the voltage that is induced in a sense coil
located at the surface can be expressed as in (2)

(2)

where . The function is
a generalized attenuation function, the ratio of total measured

Fig. 2. Layered specimen considered by the model, where layer boundaries
correspond to specific frequencies. Stress is denoted by .

Fig. 3. Measured voltage from one layer plotted as a function of frequencies
(upper cutoff) and (lower cutoff). For this study,

and . Depth was set to 100 m. Note that
when , there is no detected voltage.

Barkhausen voltage at the surface to the Barkhausen voltage at
the point of origin. It is given by

(3)

In the limiting case where and emissions from the
surface to are considered, the attenuation function becomes

(4)

The above expression is experimentally verifiable when
is equal to the slab thickness. That is, when emissions from all
depths are taken into account. In general, when the slab thick-
ness is greater than the measured signal at the surface will
not only represent the emissions occurring within the interval 0
to but also emissions in the same frequency range originating
at depths beyond .
Fig. 3 is a plot of the voltage given by (4), where

/m and V. In other words, the av-
erage Barkhausen emission in the specimen induces a voltage of
2 in its immediate vicinity. During its propagation towards
the surface, the induced voltage is attenuated exponentially as
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Fig. 4. Contour plot of the measured voltage from one layer, as a function of
frequencies (upper cutoff) and (lower cutoff). Voltage values are ex-
pressed in V. Note that when , there is no detected voltage.

determined by the term . For this plot, , which
is also the thickness of the specimen. The frequency cut-offs

and are each varied from 30 kHz to 1MHz, which
correspond to penetration depths of and for
a material of the given resistivity and permeability. Having es-
tablished a constant thickness and varying the frequency limits
and , a nonlinear trend is apparent.
Fig. 4 is a contour plot of the measured voltage from one

layer, plotted as a function of the two cutoff frequencies. It can
be seen that the peak voltage is . Since and were
defined as the lower and upper cutoff frequencies respectively,
values of for which can be ignored for the pur-
poses of this model. Hence, they were omitted from both plots.

C. Magnetic Barkhausen Emissions From A Combination of
Two Uniformly Stressed Layers

In order to produce a stress depth profile where stress takes
on different values with depth, it is necessary to consider the test
specimen divided into more than one region, as would be prac-
tically expected. A second layer which extends deeper into the
specimen has to be considered. However, if the average stresses
in the first and second layer are different, the Barkhausen emis-
sion amplitudes at their origin will also be different. Then this
can be used to determine the difference in stress between the two
layers if it is possible to distinguish between emissions from dif-
ferent depths (Fig. 5).
Consequently, and are defined as the amplitude

of emission at the origin for the first and second layer respec-
tively. The expression that takes into account emissions from
both is (5)

(5)

Fig. 5. Layered specimen considered by the model, where layer boundaries
correspond to specific frequencies. Stresses in the first and second layer are de-
noted by and respectively.

Fig. 6. Measured voltage from two layers plotted as a function of . In this
plot, MHz, MHz and V. The value of

was set to (a) 1 V, (b) 2 V, (c) 3 V and (d) 4 V. The depths were
fixed to m and m.

The first term on the right hand side contains the attenu-
ation ratio which normalizes
for emissions in the range coming from the first layer.
The second term contains the quantity of interest, (from
which the stress in the second layer can be determined) multi-
plied by the attenuation function.
To examine the effect of varying relative to , (5)

was plotted for at 1, 2, 3 and 4 V, while keeping
constant at 2 V. In Fig. 6 the measured voltage is plotted as a
function of , with MHz and MHz being held
constant. Fig. 6 shows that as the value of is increased,
there is a corresponding increase in the peak value of the mea-
sured voltage. It can be seen that when V,
the peak voltage is V.
In Fig. 7, the measured voltage is plotted as a function of

and . Having set MHz, and both and at 2
V, it can be seen that the effect of varying is not significant
and can be ignored in this case. Again, values of that do
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Fig. 7. Measured voltage from two layer plotted as a function of frequencies
(intermediate cutoff) and (lower cutoff). In this plot, MHz,

V. The depths were fixed to m and
m. Note that when , there is no detected voltage.

not satisfy the condition can be ignored, so they were
omitted in both plots.

III. CONCLUSION

In this work, a new model for the depth profiling of stress
in ferromagnetic structures was analyzed. It was found that the
measured voltage increases as the frequency span increases, for
both the one- and the two layer cases. In particular, the peak
voltage reaches V, for a specimen of m thickness,

, having considered emis-
sions of a frequency range of 30 kHz to 1 MHz. Comparison
of the peak voltages of Figs. 4 and 6 yields the observation that
when V, and the upper and lower cut-off
frequencies and depths are identical, the structure can be con-
sidered as only consisting of one layer with V. This
result can be further generalized to arrive to the conclusion that
when emission amplitudes at the origin of different consecutive
layers are identical and the cutoff frequencies are identical, the
structure can then be approximated as having a single layer.
The experimental verification of the depth profilingmodel en-

tails several stages. The reciprocal relationship between peak
Barkhausen signal amplitude and stress will be incorporated
into the model equations. A steel specimen of known perme-
ability, conductivity, magnetostriction and elasticity will be sub-
jected to four-point bending, such that a linear stress profile is

created along its centerline. A Barkhausen measurement at the
surface of the specimen will be bandpass filtered at different
frequencies, which correspond to different depths. By keeping
constant and varying , one can increase the depth range

that can be sampled in the second layer. Provided the stress in
the first layer is known, one can determine the stress values at
different depths into the specimen from the difference in peak
Barkhausen voltage between two layers, and thus construct a
stress profile. The resulting plot can then be compared to the
result of a solid mechanics simulation carried out using finite
element method software.
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This study presents the development of a non-destructive method of detecting stress as a function of depth, useful for inspecting
steel structures and components without the need to calibrate against x-ray diffraction data. A new frequency-dependent model for
Barkhausen emissions based on the attenuation of emission with frequency and distance is used to extract depth-dependent stress in-
formation. Controlled, uniform stresses are induced in an ASTM A36 steel specimen, which are then used as a reference to obtain
stress-voltage calibration profiles. An inversion process can then be employed to assess specimens of unknown stress states, by using the
previously calculated profiles. The slope of the calibration profiles is found to vary with depth, and a simple computer algorithm may be
used to extract stresses at different depths by using an averaging method.

Index Terms—Barkhausen effect, magnetic Barkhausen noise, non-destructive evaluation, non-destructive testing, stress depth
profiling.

I. INTRODUCTION

N ON-DESTRUCTIVE evaluation is a useful tool for the
prediction and prevention of component failures. Mag-

netic non-destructive evaluation has been used for assessing
stress levels in steel structures [1] because there is a strong
coupling between the magnetic and mechanical properties of
ferromagnetic materials. This is particularly important because
different types of steels are used in a wide range of appli-
cations. When a cyclically varying magnetic field is applied
to such materials, discontinuous changes in magnetization
result in Barkhausen noise which depends on microstructural
conditions such as defect/dislocation density and grain size [2],
[3]. Barkhausen noise can then be measured using a search
coil placed on the surface of the specimen. This dependence
of Barkhausen noise on mechanical and microstructural states
can, as a result, be used in non-destructive evaluation of steels
because the phenomenon shows great sensitivity to elastic
deformation.
Despite the numerous studies on Barkhausen noise in recent

years [4]–[6], the complexity of the underlying physical process
has prevented the development of an all-inclusive theory. In
the field of magnetic non-destructive evaluation, calibration of
Barkhausen noise measurement results against x-ray diffrac-
tion data is a common practice, especially for the assessment
of sub-surface stresses. This reliance on x-ray diffraction data
can be in part attributed to the lack of a theoretical explanation
for the relationship between stress and a Barkhausen measure-
ment parameter, such as the peak voltage envelope amplitude.
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However, in recent work [7] an expression based on a linear
relationship between stress and the reciprocal peak voltage en-
velope amplitude was presented, following a similar trend to
that between anhysteretic susceptibility at the origin and stress
[8]. This relationship was later verified in different steel com-
positions [9]. The strength of the relationship between stress
and is quantified by a proportionality factor , which is a
modified magnetostriction constant, as shown in (1):

(1)

where and denote different stress states, such that
and are the Barkhausen voltages corresponding to stress
and . This relationship has been used as a basis to de-

velop a model for stress-depth profiling [10], which relies on
the eddy-current damping of Barkhausen emissions to identify
the amplitude of Barkhausen emissions at particular depths. The
model inputs are the analysis depths, the slope and offset of the
linear relationship between voltage and stress for each depth
range and some experimentally measurable material parame-
ters, such as magnetic permeability and electrical conductivity.
In the present work, an ASTM A36 steel specimen was

subjected to uniaxial tension, while its Barkhausen response
was measured. The model equations were then applied to the
Barkhausen data, in order to calculate the value of the peak
Barkhausen voltage envelope amplitude that corresponds to
different depth ranges. Using the linear relationship of stress
versus reciprocal of the peak Barkhausen voltage envelope
amplitude, calibration profiles of slope proportional to
corresponding to each depth range were obtained, and it is
shown how the slopes and offsets of the calibration profiles
vary as different depths are considered. An inversion method
for assessing specimens of unknown stress state by using the
calibration profiles is proposed, and an equation for calculating
stresses at different depths is derived, based on an averaging
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Fig. 1. (a) Typical measured Barkhausen noise spectrum, with , denoting the upper, intermediate and lower cutoff frequencies (frequencies not to
scale). The limit can be lowered to in order to sample deeper regions of the specimen. (b) Ferromagnetic specimen divided in three layers of equal volume,
where , and denote the stress magnitudes in the first, second and third layer respectively. Also .

method. Furthermore, the practical limitations of the model
implementation are discussed.

II. THEORY

In previous work [10], the basis of the model comprised of
a relationship that quantifies the measured Barkhausen voltage
at the surface in terms of the voltage of a single Barkhausen
emission at its origin, such that

(2)

where is the depth at which the emission originates. The quan-
tity is the penetration depth which depends on the angular fre-
quency of the emission as well as the material permeability
and resistivity , as shown in (3):

(3)

Consider initially that the specimen has only a single layer,
where the measured Barkhausen voltage
corresponding to the first layer is represented by an integral over
all depths from the surface to some depth and over all fre-
quencies from to [10]. This results in the expression

(4)

where is the voltage of a single Barkhausen noise emis-
sion in the first layer, assuming, for mathematical tractability,
a white Barkhausen emission spectrum at the origin. The term

is a special attenuation function for the lim-
iting case where . Consider again, the addition of a
second layer of material with depth and thickness .
The Barkhausen voltage measured at the surface, emanating
from the two combined layers of material can be represented
as [10], such that:

(5)

where is the voltage of a single Barkhausen emission
originating in the second layer. Fig. 1 illustrates the concept
of a layered specimen, and how sampling different parts of the
Barkhausen frequency spectrum translates into sampling dif-
ferent depth ranges.
Both and

are experimentally measurable quantities, which correspond to
two filtered versions of the measured Barkhausen signal, one
band-passed from to and the other band-passed from
to , as seen in Fig. 1. However, the voltage emanating from
the second layer cannot be directly measured because emissions
of the same frequency may occur in different depths, making it
impossible to identify the depth of emission simply by filtering
the measured signal. Nevertheless, the value of can be
calculated by subtracting a normalized version of the first layer
voltage from the combined layer voltage

and by solving for .
The depth-profiling model considers complete attenuation

at the skin depth, such that when the lower cutoff frequency
is decreased, more material volume is sampled and more
Barkhausen emissions are taken into account. The voltage
of a single Barkhausen emission can be solved for by
rearranging (4), such that:

(6)

Similarly, (5) can be rearranged to yield the average ampli-
tude of a Barkhausen emission in the second layer , such
that

(7)

Once the probing depths and corresponding frequencies are
calculated, the attenuation functions can be evaluated, and

as well as
can be obtained by filtering the original Barkhausen signal
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Fig. 2. Conceptual calibration profiles corresponding to specific depths for
(a) , (b) , and (c) . A specimen of unknown
stress state can be assessed by applying (6) and (7), keeping , and
constant with respect to the calibration stage. The reciprocal value of the mea-
sured average Barkhausen emission in the first layer will then lead
to a stress , via the pre-established linear relationship. In a similar manner,
the stress in the second layer, and the average stress in the combined
second and third layer can be found.

accordingly. Thus, and can be obtained by ap-
plying (6) and (7) respectively. These two separate quantities
correspond to the first and second layer in the specimen.
The relationship seen in (1) relates the stress state of a layer to

the amplitude of the average Barkhausen emission originating
in that layer. It should therefore be possible to calibrate against
a known stress-voltage relationship, and then use an inversion
process to assess samples of unknown stress states.
In order to create a calibration profile it is necessary to start

with an unstressed specimen of the material under examination.
This will serve as a reference, for which the stress-voltage re-
lationship at different depths is known. By applying a uniform
uniaxial tensile stress, measuring the amplitude of Barkhausen
emissions, and using (6) and (7), corresponding to each
depth range can be plotted versus stress. It is expected that
since the stress in the reference specimen is uniform,

. This will be true provided that treating the
Barkhausen frequency spectrum in a piecewise manner, with the
skin depth defining the cutoff frequency, is a valid approach. If
this assumption is not entirely valid, the calibration curves will
not coincide, and will each be characterized by a different offset
and slope.
After the calibration profile is created, a specimen of the same

composition and unknown stress state can be evaluated. This is
done by conducting a Barkhausenmeasurement and by applying
(6) and (7) to compute the Barkhausen peak envelope voltages
in the first and second layer. Using the calibration profile, the
stress in each layer can subsequently be obtained. By decreasing
the lower detection frequency to in (7), the average stress
magnitude in the combined second and third layer can
be determined, provided the calibration profile for
exists. Fig. 2 illustrates this concept.
Having layers and unknown stress magnitudes, the stress-

depth profile of the specimen can be deduced by a simple com-
puter algorithm. Provided that layer thicknesses are identical,
the average stress in the combined second and third layer can

be denoted as in (8). In the case where the thicknesses are not
identical, a weighted average method must be used which is be-
yond the scope of the present study.

(8)

The stress in the third layer will then be

(9)

It follows that the stress in the th layer can be expressed as

(10)

where is the average stress between the second to th
layer, and can be found by using the calibration profile for

.

III. EXPERIMENTAL DETERMINATION OF THE

CALIBRATION PROFILES

A tensile test specimen of ASTM A36 steel of thickness 6.5
mm, width 12.7 mm and gauge length 26.5 mmwas subjected to
uniaxial tension in a tensile test machine. The measurement was
paused at set intervals, in order to magnetize the specimen and
obtain Barkhausen data corresponding to each stress state within
the elastic region. The specimen was magnetized with a 100 Hz
sinusoidally varying magnetic field of peak amplitude 0.5 kA/m
produced by a Barkhausen probe comprising of a magnetizing
coil wound around a ferrite C-core electromagnet.
In total, 18 measurements were taken, with 5 trials for each

magnitude of stress. A custom Matlab software was written,
which filters accordingly and then solves for the value
of , and after having accounted for ex-
ponential attenuation of the summed Barkhausen emissions, as
shown in (6) and (7). The depths were set to ,

, and , and the corresponding
cutoff frequencies , and were calculated using values
of and , obtained respectively by dc
resistivity and quasi-static hysteresis measurements. The results
are plotted as vs. engineering stress in Fig. 3, and Table I
lists the value of and the adjusted goodness of fit ratio for
each depth range.

IV. RESULTS AND DISCUSSION

Fig. 3 shows the reciprocal of the average Barkhausen emis-
sion voltage for each layer, plotted against uniaxial engineering
stress. The goodness of fit for all measurements indicates a
good agreement with the model equation shown in (1). The fact
that the calibration profile for does not coincide with
that of and , possibly indicates that treating
the Barkhausen spectrum in a piecewise manner may not be
an ideal approach, and future work may show that one needs
to alleviate the use of cutoff frequencies in the spectrum to
consider it as a whole. It should be noted that the offsets and
slopes are also expected to vary with magnetizing frequency.
However, this is beyond the scope of the present study.
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Fig. 3. Experimentally calculated calibration profiles for (a) ,
(b) and (c) , fitted with a linear regression and plotted
with 95\% confidence intervals. These trends are obtained by filtering the
Barkhausen data collected from an ASTM A36 steel specimen under uniaxial
tension. In order to produce the calibration profiles, it is assumed that the stress
along the measurement direction remains uniform throughout the depth of the
specimen. Table I lists the computed calibration profile parameters.

TABLE I
CALIBRATION PROFILE PARAMETERS

In order to successfully use the calibration profiles to assess
the variation of stress with depth for specimens of unknown
stress state, certain conditions must be met. Particularly, the
measurement parameters for calibration and test specimens
must be identical. This includes sensor configuration/geometry,
probe-specimen coupling, as well as magnetizing frequency,
magnetizing amplitude and sampling frequency. Since the
Barkhausen effect is a stochastic process, it is necessary to keep
all parameters as constant as possible across measurements.

V. CONCLUSION

In this work, a method for obtaining calibration profiles for
a stress-depth dependence model was proposed. It was found
that calibration profiles can be obtained by considering different
depth ranges inside a uniformly stressed specimen, and the con-
cept of using an inversion process to assess the stress-depth pro-
file in a test specimen of same material was presented. The cal-
culated profiles do not coincide, indicating that the assumption

of treating the Barkhausen noise frequency spectrum in a piece-
wise manner may not be entirely valid. A good agreement was
established between the linear model of (1) and the Barkhausen
data at different depths, which indicates that the linear relation-
ship between the reciprocal of the Barkhausen voltage and stress
holds as different portions of the Barkhausen frequency spec-
trum are considered. It was also shown that the stress in the th
layer is given by a simple relationship, provided the depth in-
crement is constant. Provided that measurement parameters re-
main constant throughout the calibration and detection stages,
the presented method is intended to alleviate the need for using
x-ray diffraction data, as it relies solely on calibrating against
known stress values using the reciprocal Barkhausen voltage.
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We derive a two parameter multi-exponential model to describe the frequency spectrum of

Barkhausen noise in bulk steel under high excitation rates and applied tensile stress. We show how

the amplitude and shape of the frequency spectrum depend on two directly measurable quantities,

Barkhausen voltage and effective magnetic permeability, respectively, and how these change with

stress. By incorporating frequency and depth dependence components into our model, we provide a

framework for identifying stress variations along depth, which can be used for the purposes of non-

destructive characterization. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866195]

I. INTRODUCTION

Discontinuous and irreversible changes in magnetisation

can occur when the domain boundaries of a ferromagnet are

displaced. The physical mechanisms that govern these dis-

continuous magnetisation “jumps,” also known as

Barkhausen jumps, fall into the category of non-linear dy-

namical systems. Depending on the degree to which the

domains are coupled inside the material, displacement of a

domain boundary may trigger the displacement of neigh-

bouring domain boundaries, thereby initiating a magnetic av-

alanche if the externally applied magnetic field is increased

slowly. However, inhomogeneities in the lattice tend to pin

the domain boundaries to particular locations because it is

energetically favourable. This pinning inhibits the domain

wall motion, when the applied magnetic field is insufficient

to propagate the domain wall past the pinning point. If the

strength of coupling between adjacent magnetic domains and

the degree of randomness in the pinning potential reach

some critical value, the shapes of avalanches with different

durations become similar, exemplifying scale invariance.1–10

This type of behaviour is a result of Brownian correlations in

the pinning potential and can be quantified by power-law

functions. These dynamics are also reflected in the power

spectrum of Barkhausen emissions, which, at the lower end

scales as approximately 1=x2 in the Alessandro-Beatrice-

Bertotti-Montorsi (ABBM) model11,12 and from 1=x1:3 to

1=x2 in the Random Field Ising (RFI) model, depending on

the strength of dipolar interactions.1,13 The regions in which

scale invariance applies, widen when the material is driven

at a low field rate, below a critical driving velocity. If the

driving velocity v exceeds the critical value vc, continuous

motion sets in, and it is no longer possible to distinguish

between individual avalanches. The scale of this power-law

behaviour depends on the domain wall correlation length n,

which controls the range of interaction between the moving

domain wall and the pinning sources. During magnetisation,

when the rate of applied magnetic field is increased such that

n becomes negligible, the Brownian correlations in the do-

main wall motion decrease.14 As a result, Barkhausen emis-

sions begin resembling uncorrelated Gaussian noise, and

their frequency spectrum can be approximated as flat. Since

the amplitude at the origin of emissions becomes frequency

independent, the most significant non-linear contribution in

the spectrum can be attributed to the exponential attenuation

caused by eddy current dissipation. This facilitates the deri-

vation of a model that describes the frequency spectrum of

Barkhausen emissions as a function of stress and possibly

other microstructural variations.

Consider a ferromagnetic specimen, such as bulk steel,

mathematically divided into infinitesimally thin layers along

its depth, and consider each layer as a source of Barkhausen

emissions. By magnetising the specimen at a fast rate, most

of the scaling behaviour is eliminated, giving rise to a

approximately flat Barkhausen emission spectrum. This

emission spectrum is attenuated by eddy currents as they

propagate through the specimen and superimpose at the sur-

face to produce the signal that we measured using an induc-

tion sensor.

We have derived a two-parameter multi-exponential

model for the Barkhausen spectrum and relate the two pa-

rameters to uniform tensile stress, with parameter hVi repre-

senting the signal amplitude at the point of origin of

emissions, and parameter f quantifying the rate of decay of

the emission spectrum. By that, we show that the previously

observed bulk relationship between Barkhausen amplitude

and stress15,16 can also be seen in the frequency domain.

This result has practical consequences in the area of non-

destructive characterization; it introduces the possibility of

predicting stress at specific depths inside a magnetic mate-

rial, solely by measuring the Barkhausen emissions at the

surface and analyzing the results in terms of two parameters.

It can prove useful in safety-critical applications such as in

the aerospace industry, where component failure can lead to

loss of human life.17

II. THEORY

In a specimen of ferromagnetic material that is magne-

tised by an applied field, magnetic avalanches of various

durations occur at many different depths simultaneously.

The stochastic process that governs these discontinuous

0021-8979/2014/115(8)/083906/5/$30.00 VC 2014 AIP Publishing LLC115, 083906-1
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changes in magnetisation is the Ohrstein-Uhlenbeck process,

quantified by a Langevin equation18

dHp

d/
þ Hp

n
¼ dW

d/
; (1)

where Wð/Þ is the Wiener-Levy process, and its derivative,

dW=d/ is the Gaussian white-noise process. The pinning

field Hpð/Þ quantifies the extent to which inhomogeneities in

the lattice pin the domain walls to energetically favourable

positions. The correlation length n quantifies the range of

interaction between the moving domain wall and the pinning

sources. The time-domain equivalent of (1) is18

dHp

dt
þ Hp

sc
¼ dW

dt
; (2)

where sc ¼ n=ðd/=dtÞ.
At high magnetization rates (typically� 100 Hz), sc

becomes small, such that Hp � dW=dt. This implies that at

high magnetization rates the pinning field, and consequently

the domain wall velocity are governed by a white-noise pro-

cess. To further clarify what is meant by high magnetization

rates, the dimensionless parameter18 c ¼ sf is invoked,

where s ¼ GSlirr=q and f is the frequency of the applied

field. G is a constant equal to 0.1356, S is the cross-sectional

area being magnetized, lirr is the irreversible large-scale per-

meability, and q is the electrical resistivity of the specimen.

The cross-sectional area can be approximated as S ¼ dw,

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðpflirrÞ

p
and is the penetration depth at a cer-

tain applied field frequency, and w is the width of the sec-

tion. By substitution, we yield

c ¼
ffiffiffiffiffiffiffiffiffiffi
lirr f

pq

s
Gw; (3)

which for a typical steel resistivity q ¼ 2:2� 10�7 Xm,

quasi-static permeability lirr¼ 60 l0, w¼ 10 mm, and

f¼ 100 Hz, yields c ffi 0:14. In the limit c¼ 0 and for low

applied field rates8 (typically in the order of 0.05 Hz), the

power spectrum of Barkhausen emissions resembles that of

Brownian noise (with PðxÞ � x�2), while for c> 0, and for

higher applied field rates (typically�100–1000 Hz) the

power spectrum at the origin of emissions flattens out, and

begins to resemble a white noise spectrum.

The resulting electromagnetic emissions, which diverge

outwards from the origin of local magnetisation changes,

will have the same statistical properties. This allows us to

express the Barkhausen signal at the origin V(t) as Gaussian

white noise of zero mean and variance r2

VðtÞ � N ð0; r2Þ: (4)

For steels, the addition of magnetoelastic energy due to

stress causes the nucleation of 180� domain walls in the

direction of applied stress.19 In materials with positive mag-

netostriction, an increase in the number of pinned domain

walls (caused by elastic stress) leads to an increase in the

variance of the noise, owing to the larger number of

Barkhausen events occurring at a given time instant. The

mean remains at zero, since the net magnetization increase

in the specimen is ignored.

To examine how the emissions attenuate as they propa-

gate through the material, we take the Fourier transform of

the signal V(t) at the origin. It has been shown previously

that the Fourier transform of Gaussian, uncorrelated white

noise will have a Rayleigh distributed magnitude. For mathe-

matical tractability and clarity, we only consider the mean

magnitude of the Fourier transform hVi, which is propor-

tional to the standard deviation of the noise. As the emissions

propagate, attenuation as a function of frequency causes the

higher frequency components to dissipate faster (Fig. 1),

with the rate of attenuation being exponential, such that the

measured frequency spectrum at the surface, due to one

emission, is

VðxÞ ¼ hViei/e�cðxÞx; (5)

where hVi is the expected magnitude of the Fourier trans-

form at the origin, / is the phase of the emission at the point

of origin, x is the distance from the surface to the point of or-

igin of the emission, and cðxÞ ¼ aðxÞ þ ibðxÞ is the propa-

gation constant, a function of angular frequency x.

Expression (5) describes the propagation of a plane wave in

a conductive medium; the sensor measures the perpendicular

component of the flux density, with unit vector x̂ normal to

the surface. The coefficient aðxÞ quantifies the rate of

attenuation, while bðxÞ is the phase constant and defines the

rate of phase change as the wave propagates. In conductors,

a ¼ b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xleff=2q

p
, where leff and q represent the effec-

tive magnetic permeability (here, we define the effective

magnetic permeability as the effective permeability of the

magnetic circuit, which includes the test specimen and sen-

sor apparatus) and the electrical resistivity, respectively. For

mathematical tractability, we only consider the magnitude of

the term e�cðxÞx in (5), and we take the mean of the phase at

the origin (the phase of the Fourier transform of uncorrelated

Gaussian noise is uniformly distributed between �p and p,

with a mean of zero). We can then write the attenuated am-

plitude of emission as

FIG. 1. Effect of eddy current damping on the Barkhausen spectrum. In our

model, Barkhausen emissions occurring at an infinitesimally thin region

inside a specimen have a white noise frequency spectrum. The energy in

emissions is dissipated due to generation of eddy currents, causing the spec-

trum to become pink as it propagates through the material.

083906-2 Kypris, Nlebedim, and Jiles J. Appl. Phys. 115, 083906 (2014)
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VðxÞ ¼ hVie�aðxÞx: (6)

We assume that the variation of q with stress is negligi-

ble, thus we only consider leff and hVi to be functions of

stress. Barkhausen jumps occur everywhere inside the speci-

men, and every depth x is the point of origin of a Barkhausen

spectrum, of the form (6). Integrating over a range of depths

from x0 to x1 leads to the following expression for the meas-

ured signal at the surface due to all emissions, as a function

of frequency x and stress r:

Vmeasðx; rÞ ¼ hVðrÞi
ðx1

0

e
�
ffiffiffiffiffiffiffiffiffiffi
xleff ðrÞ

2q

q
x
dx; (7)

¼ hVðrÞi 1

fðrÞ
ffiffiffiffi
x
p 1� e�fðrÞx1

ffiffiffi
x
p� �

; (8)

¼ hVðrÞi f ð0; x1; fðrÞ;xÞ; (9)

where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
leff=2q

p
and is introduced for mathematical

tractability. In the above integral, the frequency spectrum of

the voltage measured in a coil positioned at the surface is

expressed in terms of emissions emanating from a span of

depths, or a layer, which can be associated with a mean value

of emission amplitude hVi and permeability leff.

In previous work, it has been shown that the reciprocal

of the peak envelope amplitude of Barkhausen noise in the

time domain varies linearly with elastic stress.15,20 This rela-

tionship can be derived from an extension to the theory of

ferromagnetic hysteresis.21 The parameter hVi, being the y-

intercept of the frequency spectrum, represents an extrapo-

lated mean value, which is expected to vary with stress, in a

way similar to the peak envelope amplitude and RMS. We

postulate that hVi follows the same relationship with stress.

III. MEASUREMENT OF BARKHAUSEN SIGNALS AS A
FUNCTION OF APPLIED UNIAXIAL STRESS

In our experiments, we subjected a specimen of A36

steel to uniaxial tensile stress, while measuring the

Barkhausen emissions with an induction coil positioned at

the surface of the specimen, at an applied field rate of

100 Hz. This frequency also results in higher induced voltage

and therefore higher signal to noise ratio. Before fitting our

model, the raw measured signal was processed as shown in

Fig. 2. A non-linear least squares algorithm was used to fit

the following function to the post-processed frequency spec-

trum, for different magnitudes of uniform tensile stress:

VmeasðxÞ ¼ hVi fsðxÞf ð0; xmax; f;xÞ þ �ðxÞ; (10)

where xmax represents a maximum detection depth of

100 lm; over that depth range, the applied field amplitude

can be approximated as constant. The function fsðxÞ remains

invariant with stress and in our experiments decays approxi-

mately at the rate of x�0:2. It was heuristically determined

by fitting the data in iteration and searching for the decay

rate that yielded the best fit. Within the scope of the present

study, the physical origin of this power-law decay is not of

interest; it can be attributed to either sensor frequency

response and/or some residual scaling behaviour. However,

it is important to note that it is not found to be a function of

stress, while the multiexponential expression contained in

f ð0; xmax; fðxÞÞ is varying with stress. The fitting parameters

were hVi, f and the constant term �ðxÞ, which accounts for

random Gaussian noise introduced by the measurement.

The parameter hVi is proportional to domain wall veloc-

ity, which is further confirmed in the results of Figures 3(a)

and 3(b). In the elastic region (region 1), domain wall veloc-

ity is increased due to the effect of elastic energy on the lat-

tice which unpins the domain walls. At the onset of the

plastic region (region 2), newly introduced dislocations pin

domain walls, such that on average domain wall velocity is

reduced. Prior to fracture (region 3), domain wall activity

has reduced significantly due to the high dislocation density.

We apply our linear model of 1=hVi vs r to the elastic region

(1) (Fig. 3(b)). This relationship can be derived theoretically,

from an extension to the model of ferromagnetic hystere-

sis.21 Note that in Figure 3(b), a linear relation may also be

used to approximate the relationship between 1=hVi and

stress in the plastic region.

A decrease of f2, and consequently leff with stress is

seen in Figure 3(b). The fact that this quantity exhibits a con-

stant, linear decrease over both elastic and plastic regions is

notable; mainly because this behaviour is not observed in the

case of 1=hVi, while both 1=hVi and f are intrinsically

coupled via the permeability. It is noteworthy that the param-

eter hVi controls the y-axis intercept of the spectrum. It can

be shown that Vmeas ! hVixmax as x! 0, which indicates

that the extrapolated value at x ¼ 0 will be proportional to

FIG. 2. Analysis of raw Barkhausen signals. (a) From the raw signal, we extracted the regions centered around the peaks, calculated the ensemble average, and

(b) applied a Hamming window to reduce spectral leakage. (c) To eliminate low-frequency sensor artifacts, we omitted data below 20 kHz. In order to remove

random fluctuations in the spectral amplitude at higher frequencies, the spectrum at each magnitude of stress was smoothened with a moving average over a

10 kHz span. The mean (red) as well as upper and lower 95% confidence bounds (green) were obtained by calculating the ensemble average of 5 measurement

trials for each stress. Each trial contained a total of 10 Barkhausen bursts.
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the depth of detection. Parameter f is responsible for the rate

of attenuation with frequency; stress affects both the ampli-

tude and the shape of the spectrum.

IV. DISCUSSION

From Fig. 4, we observe that on average, the quality of

fit slightly improves with increasing stress, indicating that

the white noise assumption becomes increasingly valid with

stress.22 To elaborate on this statement, the mean field theory

can be invoked. In ferromagnetic materials, the degree of

coupling between neighbouring domains is quantified by the

mean field coupling coefficient a. The energy stored between

N neighbouring domains with magnetisation m is given by

E ¼ �m � l0aNm; (11)

where l0 is the permeability of free space. To model inho-

mogeneities that pin the domain boundary as it moves, a sto-

chastic pinning field Hi � Nð0; r2Þ is introduced, such that

the energy stored between the domain and the pinning field

is

E ¼ �l0m �Hi: (12)

Finally, the magnetostatic energy in the applied field Ha

is represented by

E ¼ �l0m �Ha; (13)

to yield an expression for the total energy of

E ¼ �l0m �Ha �m � l0aNm� l0m �Hi; (14)

where the first, second, and third terms represent the magne-

tostatic (Zeeman), coupling, and pinning energies, respec-

tively. Hysteretic behaviour increases with a, due to the

increased coupling between adjacent domains. This is analo-

gous to the snapping mechanism in brittle materials, in that a

single domain wall displacement instigates a large ava-

lanche. In models of ferromagnetic hysteresis, a high value

for a is associated with increased switching behaviour, and

high permeabilities at the coercive point, a characteristic of

hard ferromagnets. Soft ferromagnets, on the contrary, ex-

hibit lower values of permeability at the coercive point,

caused by a smaller exchange coupling.

In the presence of dislocations (which may have similar

effect on a propagating domain as impurities) caused by lat-

tice straining, domain coupling decreases even further, mak-

ing the contribution of a small enough for the stochastic

pinning field term to dominate. Since all other energy terms

remain invariant, the free energy term in (14) can be

expressed as

DE ¼ �l0m �Hi: (15)

Thus, under high applied stresses, the dominating mech-

anism is Hi, which can be modeled as white noise with fre-

quency spectrum ranging from 20 kHz (approximate lower

cutoff frequency of Barkhausen spectrum) to 1.25 MHz

(upper cutoff imposed by measurement system). A slight

overall increase with stress of the R2 quality of fit coefficient

is observed in Fig. 4. Higher stress in a material of positive

FIG. 3. Results of parameter extrac-

tion. Figure 3(a) shows the relationship

between the mean voltage at the origin

hVi and stress, obtained from a nonlin-

ear least squares fit of our theory to

measurement. Regions (1), (2), and (3)

indicate the elastic, plastic, and frac-

ture regions. In (b), we plot the recip-

rocal of hVi for values of stress in the

elastic region, which follows a linear

relationship with stress. In (c) and (d),

parameters f and f2 (which is propor-

tional to leff) can be seen to decrease

with stress. The upper and lower 95%

confidence bounds were calculated

using an asymptotic normal distribu-

tion for the parameter estimates.

FIG. 4. Fit of (10) to experiment. Our model employs two parameters to

describe the Barkhausen spectrum: hVi, which is the mean amplitude of the

Barkhausen voltage at the origin of emission and controls the y-intercept of

the measured spectrum at the surface, and f, which is proportional to the

square root of effective permeability, and controls the decay of the

Barkhausen signal amplitude as it propagates to the surface.
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magnetostriction is associated with increased irreversible

permeability lirr, which according to (3) will lead to an

increase in c, thus validating our assumption that an increas-

ing c gives rise to a white noise spectrum at the origin.

V. CONCLUSION

In the case where stress is invariant along depth, as

examined in the present paper, the integral in (9) may be

bounded by 0 and xmax. In the case of stress variations with

depth, where every volumetric region gives rise to a unique

V and f, the expression may be split into an arbitrary number

of integrals, in order to consider intermediate depth ranges

separately. Each volumetric region in the specimen is

assumed to give rise to its own Barkhausen spectrum, with

all spectra combining at the surface to produce Vmeas, such

that the combined spectrum is

VmeasðxÞ ¼
XN

i¼1

hViifsðxÞf ðxi; xiþ1; fi;xÞ þ �ðxÞ; (16)

where N denotes the number of depth ranges, or layers. After

having fitted the above function to the measured spectrum

and obtained hVi and f for each depth range, they can be

compared to reference values given by the controlled uni-

form stress measurements (Fig. 3). This approach can be

used to create stress-depth profiles of magnetic materials for

the purposes of non-destructive characterization.

In this work, we derived a model to describe the spec-

trum of Barkhausen emissions under applied tensile stress, as

a function of the Barkhausen amplitude and permeability at

the origin of emission. The formulation of the model in terms

of depth spans, or layers, opens the possibility of evaluating

material properties as a function of depth. Each layer of

emissions contributes to the measured spectrum at the sur-

face, such that different stress-depth profiles will result in

different combinations of values of parameters observed at

the surface. This approach can be used to build sensors that

employ the method of Barkhausen spectroscopy as a

means for evaluating and characterizing materials non-

destructively. In applications where safety is critical, the

former can be used as part of a procedure for detecting and

preventing catastrophic failures.
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In this study, we conceptually divided a ferromagnetic specimen into layers along its depth. For

each layer, we derived a non-linear integral equation that describes the attenuation with frequency

and distance of magnetic Barkhausen emissions coming from that layer. We postulate that the

Barkhausen spectrum measured at the surface by an induction coil can be expressed as the sum of

the individual layer spectra. We show how a non-linear least squares algorithm can be used to

recover the properties in individual layers. These are related to stress using an extension to the

theory of ferromagnetic hysteresis. We found that the quality of the fit is influenced by the

sensitivity of the ferromagnetic material to strain, as well as by the sensor-specimen coupling. The

proposed method can be used for the non-destructive characterization of stress as a function of

depth in magnetic materials. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862095]

I. INTRODUCTION

The magnetic Barkhausen noise method is popular for its

reliability1–8 in assessing stress levels in ferromagnetic compo-

nents when other non-destructive evaluation methods cannot

be used to evaluate the specimen under test. The method relies

on detecting the magnetic Barkhausen signals, which are elec-

tromagnetic noise-like emissions with energy contained mostly

in the 20 kHz to 2 MHz range. These emissions are a by-

product of discontinuous magnetization changes, which occur

when the specimen is subjected to an applied, time-varying

magnetic field. The presence of magnetoelastic energy in the

lattice, as a result of strain, alters the magnetic permeability

and thus the Barkhausen signal. This makes it possible to mea-

sure the amplitude of the Barkhausen signals and obtain an

estimate of mechanical stress, based on a calibration curve cal-

culated from a series of reference measurements.

Despite the method’s success in assessing average stress lev-

els in a structure, there is still a need for the ability to determine

depth-specific stress information; this is currently done using a

combination of x-ray diffraction and electropolishing, which is,

however, destructive. Such an advance would extend the existing

Barkhausen technique and thus provide industry with a rapid,

non-destructive, cost-effective stress evaluation tool.

In this study, we formulate a system of non-linear inte-

gral equations that describe the spectra of Barkhausen sig-

nals emanating from different depths inside a specimen. An

expression for the resultant signal measured at the surface

was derived, and a least-squares fitting algorithm was used

to extract stress-related parameters for each depth.

II. THEORY

Consider a specimen of ferromagnetic material with ho-

mogeneous and isotropic resistivity q. Barkhausen emissions

occur over the entire volume that is magnetized by an

externally applied magnetic field. They are collectively

assumed to have a flat frequency spectrum, such that their

average amplitude at the origin Vorig is independent of fre-

quency; this is the white noise assumption. Assuming plane

wave propagation, as emissions travel towards the surface,

they attenuate as a function of both distance and frequency,

such that x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q=xl

p
; where x is the distance at which the

amplitude reduces to 1=e of its value at the origin, l is the

magnetic permeability seen by emissions as they travel

towards the surface, and x is the angular frequency. In our

treatment, we have ignored the phase of Barkhausen emis-

sions and considered only their magnitude. It is possible to

conceptually divide the specimen into layers along its depth,

with each layer having a unique value of permeability l and

emission amplitude Vorig, associated with a certain magni-

tude of mechanical stress r present in that layer. As emis-

sions propagate, they attenuate at a rate unique to each layer

(in previous treatments and to simplify the problem, we

assumed that permeability remained invariant1,3).

A. Single emission

It is possible to express the measured emission at the

surface, in terms of its amplitude at the origin1,3

Vatt1ðxÞ ¼ Vorig1e�f1x
ffiffiffi
x
p
; (1)

where f1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l=2q

p
. The above emission occurs in the first

layer and thus only passes through that layer, attenuating at

an exponential rate proportional to f1. For an emission origi-

nating in the second layer, in a similar manner, one can write

Vatt2ðxÞ ¼ Vorig2e�f2ðx�DxÞ
ffiffiffi
x
p

e�f1Dx
ffiffiffi
x
p

¼ Vorig2e�
ffiffiffi
x
p
ðf2ðx�DxÞþf1DxÞ; (2)

as the emission attenuates at a rate proportional to f2 while it

passes through the second layer. The layer thickness is

denoted by Dx.a)Electronic mail: kypris@iastate.edu.
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B. Multiple emissions

Since multiple emissions occur in a layer, by taking the

integral over a certain depth range, the combined spectra of

all emissions within that range are considered. That gives

Vatt1ðxÞ as the component of the signal detected at the

surface1,3

Vatt1ðxÞ ¼ Vorig1

ðx1

x0

e�f1x
ffiffiffi
x
p

dx

¼ � Vorig1

f1

ffiffiffiffi
x
p e�f1x1

ffiffiffi
x
p
� e�f1x0

ffiffiffi
x
p� �

: (3)

Similarly, for emissions originating in the second layer,

Vatt2ðxÞ ¼ Vorig2

ðx2

x1

e�
ffiffiffi
x
p
ðf2ðx�DxÞþf1DxÞdx

¼ � Vorig2

f2

ffiffiffiffi
x
p ðe�

ffiffiffi
x
p
ðf2x2�ðf2�f1ÞDxÞ

�e�
ffiffiffi
x
p
ðf2x1�ðf2�f1ÞDxÞÞ: (4)

Uncorrelated white noise has a uniformly distributed

phase between �p and p; we can therefore use the assumption

that at the origin the phase is zero (mean value) such that,

since dispersive effects are ignored, the resulting phase at the

surface is also zero, leading to only constructive interference

when all attenuated spectra are summed. By summing the

emissions in separate layers, we are also implicitly assume

that they are statistically independent. This summation yields

the measured spectrum at the surface VmeasðxÞ, such that

VmeasðxÞ ¼
X

i

Vatti
ðxÞ; (5)

where Vatti
is the Barkhausen signal from the ith layer. One

can retrieve the stress state of the material, by fitting the

above expression to Barkhausen spectra measured at the sur-

face of a specimen and extracting the value of stress-related

parameters f and Vorig. With this approach, for n total layers,

one obtains 2n parameters. It is possible to reduce the num-

ber of fitting parameters by incorporating a Barkhausen-

stress calibration relationship2,9 into our model for the

spectrum.

C. Reducing the number of fitting parameters

It was shown previously10 that the reciprocal of the peak

differential susceptibility 1=v0 varies linearly with stress, via

the following relation:

1

v0ð0Þ �
1

v0ðrÞ ¼
3br
l0

; (6)

where r denotes stress and b is a magnetostrictive coefficient

with units m2A�2, which connects magnetostriction with

magnetization,11 associated with a quadratic approximation

to the k�M curve, and can be obtained using a quasi-static

magnetostriction measurement. The above relation can also

be used to relate the reciprocal of the peak Barkhausen volt-

age to stress,2 such that

1

Vorigð0Þ
� 1

VorigðrÞ
¼ 3b0r

l0

; (7)

where b0 is a modified magnetostriction coefficient with units

m2V�1A�2. Its value depends on the frequency of magnet-

ization, strength of magnetizing field and sensitivity of the

Barkhausen probe, and is, thus, not easily determinable. By

dividing (6) by (7), we yield

1

v0ð0Þ �
1

v0ðrÞ
1

Vorigð0Þ
� 1

VorigðrÞ

¼ b

b0
: (8)

Solution for Vorigð0Þ yields

VorigðrÞ ¼ �
b

b0
1

1

v0ð0Þ �
1

v0ðrÞ �
b

b0
1

Vorigð0Þ

; (9)

where b, v0ð0Þ, and Vorigð0Þ can be experimentally deter-

mined. The differential susceptibility at some value of

unknown stress v0ðrÞ is related to lr and f such that

v0ðrÞ ffi l0rðrÞ ¼ 2qf2ðrÞ=l0: (10)

By substituting (9) into (3) and (4) (and consequently

(5)), we are reducing the number of fitting parameters from

2n to nþ 1.

III. SIMULATION OF BARKHAUSEN SPECTRA
EMANATING FROM VARIABLE STRESS-DEPTH
PROFILES

To establish a relationship between stress and relative

permeability, an extension to the theory of ferromagnetic

hysteresis10 was used

l0r ffi v0 ¼ Ms

3a� aþ 3bðrþ rof f setÞ
l0

� �
Ms

; (11)

where a is a parameter which characterizes the shape of the

anhysteretic magnetization, a is a mean field term that quan-

tifies interdomain coupling, r is the stress present in the sam-

ple, and Ms is the saturation magnetization. Plots of l0r and

its reciprocal versus stress can be seen in Fig. 1.

To simulate non-uniform strain, each layer was assigned

a different value of stress, by modulating the value of the dif-

ferential permeability and thus the parameter f, which was

defined in Sec. III. Different values of stress lead to different

y-axis intercepts and spectrum shapes, as shown in Fig. 2. To

simulate a practical measurement and thus make the treat-

ment more realistic, Gaussian random noise was added to the

simulated spectra. A least squares algorithm was used to

obtain the estimates f̂1 and f̂2 , from which the stress can be

calculated, using the linear relationship shown in Fig. 1.

IV. DISCUSSION

From the results of Fig. 1, it is evident that tensile stress

leads to an increase in the Barkhausen signal amplitude at

17E305-2 Kypris, Nlebedim, and Jiles J. Appl. Phys. 115, 17E305 (2014)
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the origin. This is true for steels with positive magnetostriction,

while in the case of negative magnetostriction, the converse is

true. While the parameter b solely relies on the magnetome-

chanical coupling within the specimen and therefore can be

accurately determined via a quasi static magnetostriction mea-

surement, b0 relies also on the probe-specimen coupling and

amplification factor of the sensing equipment. The magnetiza-

tion in a material with a higher value of b is more sensitive to

changes in strain, and, as a result, the Barkhausen amplitude at

the origin becomes larger. The amplitude of the signals at their

origin also affects the accuracy of the fitting algorithm. It fol-

lows that detection of stress becomes easier and more reliable

when using a well-coupled, sensitive sensing element on steels

with relatively high magnetostriction.

V. CONCLUSION

In this work, we derive the theoretical framework for a

magnetic spectroscopy method that can be used to nondes-

tructively assess the local stress state by separating the

Barkhausen signals originating in different regions inside a

ferromagnetic specimen. This is particularly useful in aero-

space applications where tensile stresses on component

surfaces may initiate crack formation, possibly leading to

failure and loss of human life.
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(a)

(b)

FIG. 2. Least-squares fit to simulated Barkhausen spectra, of the non-linear

expression of (5) combined with the relationship in (9), for different stress

magnitudes in the first and second layer. The value of b0, which quantifies

the sensitivity of the sensing element, was set to 1� 10�22 m2V�1A�2. The

parameters v0ð0Þ ffi l0rð0Þ, q, and Vorigð0Þ were set to 42, 0.22 lX m, and

10 V, respectively. The layer thickness Dx was set to 50 lm.

FIG. 1. Calibration relationship, relating relative differential permeability, and

its reciprocal to stress. We set a ¼ 2019:620 Am�1, Ms ¼ 2:485� 105 Am�1,

and a ¼ 1:9119� 10�2, which are typical values for a soft steel. The values of

b and rof f set were set to 1� 10�17 m2A�2 and�800 MPa, respectively.
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The effects of design parameters for optimizing the performance of sensors for magnetic Barkhausen

emission measurement are presented. This study was performed using finite element analysis. The design

parameters investigated include core material, core-tip curvature, core length, and pole spacing.

Considering a combination of permeability and saturation magnetization, iron was selected as the core

material among other materials investigated. Although a flat core-tip would result in higher magnetic flux

concentration in the test specimen, a curved core-tip is preferred. The sensor-to-specimen coupling is

thereby improved especially for materials with different surface geometries. Smaller pole spacing resulted

in higher flux concentration. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864438]

I. INTRODUCTION

Barkhausen emissions occur due to sudden changes in

magnetization within a ferromagnetic material and are

obtained with application of a continuously varying mag-

netic field.1 The emissions can be measured as induced volt-

age signals using induction sensors. Due to the strong

interrelationship between the magnetic properties and micro-

structural features in ferromagnetic materials, Barkhausen

effect presents a powerful tool for non-destructively monitor-

ing the condition of such materials. This can be done by cor-

relating the peak amplitude of the voltage pulse obtained

during Barkhausen emission measurement with stress.2,3 For

industrial equipment, such monitoring of structural health is

essential to avoid failures resulting from micro-structural

changes, residual stresses, surface deformations, and micro-

cracks generated in operations.

Apart from the stress-state or other micro-structural

inhomogeneities in the materials, the detected Barkhausen

signal also depends on the magnetizing field produced by the

coils, the core geometry, sensor-to-specimen coupling, and

spacing between core tips. It is therefore important that the

sensor configuration be optimized to improve the sensitivity,

reproducibility, and accuracy of the detected Barkhausen sig-

nals. In this study, it is shown how the choice of sensor

design parameters affects the generation of magnetic fields

used to excite Barkhausen emissions in a specimen. Using fi-

nite element simulations a method of optimizing these pa-

rameters for sensors with C-core geometries with two

windings is demonstrated. The choice of performing DC

simulations and thus ignoring frequency dependent effects is

supported by the fact that typical Barkhausen noise excita-

tion coils operate in the lower quasi-static limit and are thus

well described by a DC approach.

II. THEORY

From Ampere’s circuital law, for a magnetic circuit

þ
H � d‘ ¼ NI: (1)

Here H is the magnetic field strength in the core, gener-

ated due to current I flowing in a coil having N turns. ‘ is the

length of the flux path. The equivalent circuit of the magnet-

izing unit for this study is shown in Fig. 1(a). The total mag-

netic field strength due to the two magnetizing coils is taken

to be 0.5 kA/m, in line with a previous study4 on Barkhausen

measurement. The two magnetizing coils can be approxi-

mated as solenoids of finite lengths. We can therefore find

the field intensity along the axis, at a distance x from the cen-

ter of the solenoid using the relation5,6

H ¼ NI

L

Lþ 2x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ðLþ 2xÞ2

q þ L� 2x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ðL� 2xÞ2

q
0
@

1
A: (2)

D is the coil diameter, which for a C-core represents a

coil with value shown in Table I. L is the length of the mag-

netizing coil. The magnetic field at the off-axis point C,

which in this study is the center of the test specimen, is con-

sidered to be equivalent to the on-axis field at a distance x

from the center of the coil. This is a valid approximation

since the magnetic flux path is curved by the material, thus

making it possible to set x¼ABC. Therefore, we use this

relationship to approximate the value of the magnetic field at

the point marked C. Since the analytical expression is an

approximation of the magnetic field at point C, we utilized fi-

nite element simulations for improved accuracy.

III. SIMULATION

Fig. 1(b) shows the geometry of the magnetizing unit.

C-core geometry was selected, being a typical geometry for

Barkhausen sensors. The number of turns and coil length for

the magnetizing coils were calculated using Eq. (2). A DC

magnetizing current of 1 A was assumed. The properties and

dimensions of the core and the coil are listed in Table I. A fi-

nite element simulation was performed using the AC/DC

module of COMSOL Multiphysics.

a)Author to whom correspondence should be addressed. Electronic mail:

neelampg@iastate.edu.
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IV. RESULTS AND DISCUSSION

The effects of using different core materials for the mag-

netizing unit and the variations in the tip-curvature, length

and inter-pole spacing of the core-materials have been

investigated.

A. Effect of core material

Table II shows the core materials investigated including

their electrical and magnetic properties. It can be seen in

Fig. 2 that the maximum magnetic flux density in the mate-

rial corresponds to the material with highest permeability.

Although permalloy has the highest flux concentration, its

saturation magnetization (0.86� 106 A/m) is almost half of

that of iron (1.71� 106 A/m). Since it is important not to sat-

urate the core material in application, iron was selected as

the choice material for the rest of the study.

B. Effect of core-tip curvature

The effect of core-tip curvature on the magnetic flux

density in the sample is shown in Fig. 3. The curvature of the

core-tip is an important parameter to ensure good sensor-to-

specimen coupling. Cores with flat, pointed and curved tips

were investigated. Fig. 3 shows that the best performance

can be obtained using a core-material with a flat tip.

Nevertheless, in applications, a curved core-tip helps ensure

consistent flux coupling with test specimens of varying sur-

face geometries. Hence the core-tip curvature selected has an

arc length of 3.45 mm that is slightly more than the length of

a flat tip. Magnetic flux leakage occurs in the region between

the core poles resulting in asymmetrical flux density above

and below the test specimen.

FIG. 1. (a) The equivalent magnetic circuit. (b) Schematic of the magnetiz-

ing assembly showing the core material (1), coils (2), and test specimen (3).

Line segments NO and PQ represent sections along X and Z direction,

respectively.

TABLE I. Core and coil dimensions (per pole).

Sensor Coil Core

Material Copper Variable

Length 8 mm 14 mm

Width 4 mm 3.4 mm

Depth 4 mm 3.4 mm

Number of Turns 32 N/A

FIG. 2. Effect of material on magnetic flux density. Magnetic flux density

was measured between the pole centers along the line segment NO as seen

in Fig. 1(b).

FIG. 3. Effect of tip curvature on the magnetic flux density. Magnetic flux

density was measured along the line segment PQ as shown in Fig. 1(b).

TABLE II. Properties of the materials studied for use as the core material of

the magnetizing unit.

Material

Electrical

Conductivity

S/m

Relative

Permeability

Relative

Permittivity

Air 0 1 1

Iron 1E7 5000 (Ref. 7) 300 (Ref. 8)

78 Permalloy 0.5E7 100000 5000 (Ref. 8)

Electrical Steel 2.12E6 4000 1

Ni-Zn Ferrite 2E-5 (Ref. 9) 1000 (Ref. 10) 14 (Ref. 9)

17E512-2 Gaunkar et al. J. Appl. Phys. 115, 17E512 (2014)
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C. Effect of core length

The effect of path length, ABC, of the core material on

the generated magnetic field is shown in Fig. 4. These are

obtained using an iron core with an arc length of 3.45 mm.

The magnetic field strength decreases with increasing length

of the core material. This is an important design considera-

tion especially where varying the sensor size is necessary to

test different parts of the same component. The maximum

field strengths obtained at point C are in the range

0.31–0.4 kA/m. This is less than the 0.5 kA/m calculated and

might be due to flux leakage. The maximum field penetration

is obtained with the magnetizing coils are placed at a dis-

tance of 0.5 mm (i.e., closest to the test specimen). This was

incorporated into the design to observe the effect of spacing

between the poles of the sensor.

D. Effect of inter-pole spacing

Fig. 5 shows the effect of varying the spacing between

the two poles of the sensor. It can be seen that small spacing

maximizes the magnetic flux density. In application, how-

ever, maximizing the flux density by decreasing the pole

spacing should be balanced with the fact that measurement

noise increases due to mutual inductance when the pole

spacing is reduced. This is important considering that

Barkhausen emissions are already noise-like.

V. CONCLUSIONS

The study carried out on the optimization of the sensor

design parameters for Barkhausen emission measurements

revealed the following. A sensor constructed with soft iron

resulted in high magnetic field penetration into the test speci-

men. The sensor geometry governed the coupling between

the sensor and the test specimen, a flat tip resulting in the

best coupling. The sensor design can be further optimized to

suit specific applications taking into consideration the pa-

rameters analyzed and described in this study.
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Ferromagnetic materials occur in single or multi-phase state and furthermore can undergo phase changes during processing
or over time during service exposure. These phase changes can be attributed to physical processes or chemical reactions. In this
paper, we examine the hysteresis and Barkhausen emission profiles of two-phase magnetic materials. Besides the shape of magnetic
hysteresis curves that can reveal the presence of more than one phase, we demonstrate that the Barkhausen noise signatures for
two-phase materials form two-peaks in their Barkhausen voltage profile. This can be used as a tool for non-destructive evaluation
of ferromagnetic materials in industrial applications.

Index Terms— Barkhausen emission, hysteresis, Jiles–Atherton (J–A) model, multi-phase materials, non-destructive evaluation,
two-phase materials.

I. INTRODUCTION

HYSTERESIS is a path-dependent response of a mate-
rial to an input based on its previous exposure to

the input. It is commonly observed in ferromagnetic and
ferroelectric materials when they are subjected to external
magnetic and electric fields, respectively. Several models
[1]–[4] have been proposed to predict the hysteretic behav-
ior of ferromagnetic materials. Of the available empirical
models, the Preisach model [2] and Jiles-Atherton (J–A)
model [4] are widely used. In this paper, we adopt the
J–A model to study hysteresis in two-phase ferromagnetic
materials.

The J–A model considers an array of distributed mag-
netic moments subjected to magnetic field, temperature, and
stress. The bulk magnetization of the material is obtained
by integrating the distribution of magnetic moments over
all the possible orientations. The changes in magnetization
can then be subdivided into magnetic domain processes,
which contribute to reversible and irreversible changes in
magnetization.

Besides magnetic hysteresis curves, magnetic Barkhausen
effect (MBE) emissions also represent changes in the mag-
netization behavior of a material when it is subjected to a
continuously varying magnetic field [5]. These emissions can
be captured as voltage pulses using a sense coil placed in the
vicinity of the test specimen. MBE emissions are related to
the interaction of the magnetic domains with the pinning sites
during magnetization [6].

Previous studies have extended the J–A model to incorpo-
rate anisotropy, magnetoelastic, and thermal effects [7]–[9].
Recently, it has been extended to model the dynamic hysteresis
of materials with two ferromagnetic phases [10]. In this paper,
we show that the MBE emission and hysteresis behavior for
single phase and two-phase materials differ.

Manuscript received March 7, 2014; revised June 25, 2014; accepted
June 27, 2014. Date of current version November 18, 2014. Corresponding
author: N. P. Gaunkar (e-mail: neelampg@iastate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.
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II. THEORY

A. Single-Phase and Two-Phase Materials

Single-phase magnetic materials usually exhibit a sigmoid-
shaped hysteresis curve over one cycle of applied magnetic
field. In contrast, two-phase (or multi-phase) magnetic mate-
rials, may exhibit a distorted sigmoidal curve, reflecting the
presence of two or more magnetic phases in one hysteresis
cycle. One of the phases switches at a lower coercive field
and other at a higher coercive field.

An example can be found in composite materials, which are
currently finding applications in magnetic sensors/actuators,
composite magnetoactive materials, and exchange-spring mag-
nets. A second phase can form within a single-phase matrix
material as a result of external stress [11], changes in com-
position, or sometimes by thermal processing. Fig. 1 shows
hysteresis loops corresponding to a single magnetic phase and
two-phase magnetic materials. Although studies on models for
single phase materials are extensive, there is still a need for
a suitable model to properly represent the magnetic hysteresis
in multi-phase magnetic materials. A suitable model will be
able to predict the magnetic properties and performance of
composite magnetic materials.

B. J–A Model

The J–A model was originally developed for describing
the hysteresis behavior of a simple single-phase ferromagnetic
material [4]. It uses five physical parameters α, a, k, c, and Ms
to predict the magnetic hysteresis behavior of materials. α is
the domain coupling coefficient, a is the domain density coef-
ficient, k is the pinning coefficient, c is the reversibility coeffi-
cient, and Ms is the saturation magnetization. The permeability
is affected by domain coupling α, and domain density a. The
pinning parameter k, is proportional to the density of pinning
sites and the energy of pinning sites primarily determines
the coercivity. The reversibility factor c, represents reversible
domain wall bowing and rotation. Mathematically, the J–A
model describes the hysteresis behavior of magnetic materials
by solving the relation in [4]

d M

d H
= 1

(1 + c)

Man − M

δk − α(Man − M)
+ c

(1 + c)

d Man

d H
(1)

0018-9464 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Hysteresis curves for a single magnetic phase (red-solid curve) and
a two-phase magnetic material (blue-dashed curve).

where H refers to the applied field and δ is a directionality
parameter, ranging from 1 for the forward magnetization
cycle, to −1 for the reverse magnetization cycle, M refers to
the total magnetization, and Man represents the anhysteretic
magnetization. M can be further subdivided into the irre-
versible (Mirr) and reversible magnetization (Mrev) as in

M = Mirr + Mrev. (2)

The reversible magnetization is attributed to domain wall
bowing, reversible translation, and reversible rotation, whereas
the irreversible magnetization is primarily due to domain wall
pinning and irreversible rotation. The anhysteretic magnetiza-
tion can be described using the Langevin function as described
in (3). This relation highlights the dependence of Man on the
saturation magnetization Ms , the domain density, a and the
effective applied field He

Man = Ms

(
coth

He

a
− a

He

)
. (3)

The effective field is considered to be a combination of
the applied field H and the magnetization M scaled by the
coupling parameter α as follows:

He = H + αM. (4)

In order to model the hysteresis behavior in two-phase mate-
rials as shown in Fig. 1, the J–A parameters for each phase
are extracted. Using this set of parameters, we reproduce the
magnetic hysteresis loop for each phase. For a two-phase
material, for example, with a hard and a soft phase that are
not coupled as shown in Fig. 1, the two sets of parameters
should yield hysteresis loops corresponding to those separate
magnetically hard and soft phases. This ability to reproduce
the hysteresis loops of constituent phases of a composite or
a combined hysteresis loop of the phases present using the
plots of the J–A model, presents a viable approach for non-
destructive evaluation of the two phase materials.

C. Stochastic Model for Barkhausen Effect

The stochastic nature of the Barkhausen emissions have
been studied in detail [12]–[14]. Although Barkhausen

emissions result from discontinuous magnetization changes
inside a material, they can be measured on the surface of
a material using an inductive sensor. We use this interesting
feature of MBE emission and correlate it to the magnetization
response to study the ferromagnetic phases within the material.
From Faraday’s law of electromagnetic induction, the induced
emf, Vemf , sensed by the Barkhausen sensor is proportional to
the rate of change of magnetic flux with time dφ/dt , which
is equivalent to the rate of change of magnetization with time
scaled by the area of the pick-up coil and permeability of
free space. Alternatively, the sum of the magnetization jumps
(jump sum magnetization d MJS/dt) due to the irreversible
component of magnetization is related to Barkhausen emis-
sions. The relationship between the induced emf, time rate of
change of MJS, and irreversible magnetization component due
to an applied magnetic field is shown in (5), where d Mirr/d H
is the differential susceptibility and d H/dt is the time rate of
change of the applied magnetic field [15], [16]

|Vemf | ∝ d MJS

dt
= γ

d Mirr

d H

d H

dt
(5)

where γ represents the ratio of the discontinuous magneti-
zation Mdisc to the irreversible component of magnetization
Mirr multiplied by Nt , the number of Barkhausen events
occurring in a given time period t . 〈Mdisc〉 represents average
discontinuous change in magnetization. In this case, it is
considered to be an ensemble average. It is also a very small
quantity. Numerically

γ = d〈Mdisc〉Nt

d Mirr
= 〈Mdisc〉 d Nt

d Mirr
+ Nt

d〈Mdisc〉
d Mirr

. (6)

It was found that the size of the Barkhausen jumps is
considered to be weakly related to the irreversible change
in magnetization and thus, γ can be approximated to be
equal to 〈Mdisc〉d Nt /d Mirr. The random nature of Barkhausen
emissions allows the number of events, Nt , to be described by
a recursive relation wherein the number of events is always
held to be a positive, non-zero quantity. The increment in
the number of events with time is assumed to follow a
Poisson distribution [14]. The number of events, Nt in the
time interval t , is related to the number of events Nt−1 in the
previous time interval t − 1 as seen in

Nt = Nt−1 + δrand
√

Nt−1 (7)

where δrand is a random number lying in the range ±1.47.
Originally, δrand was assumed to lie in the range ±1. However,
32% of the time the increment in Nt should be beyond one
standard deviation [14]. Incorporating (5)–(7), we model the
Barkhausen activity as described by the relation in [14]

d MJS

dt
= d Mirr

d H

d H

dt
〈Mdisc〉 d Nt

d Mirr
. (8)

Equation (8) shows that the magnetization jump sum is propor-
tional to the number of Barkhausen activities resulting from
discontinuous magnetization process. Equations (1) and (8)
form the foundation for the stochastic-hysteretic model for
Barkhausen emissions. In the following sections, we extend
these relations to describe the Barkhausen noise signals in
two-phase magnetic materials.
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TABLE I

EXTRACTED J–A MODEL PARAMETERS FOR

INDIVIDUAL MEASURED PHASES

TABLE II

EXTRACTED J–A MODEL PARAMETERS FOR

COMBINED MEASURED PHASE

III. EXPERIMENTAL DETAILS

Constituent powders, barium hexaferrite (BaFe12O19-hard
phase) and cobalt manganese ferrite (CoMn0.1Fe1.9O4-soft
phase), were first ball-milled and then pressed into 1 in,
0.5 in, and 0.25 in pellets. This was followed by sintering at a
temperature of 1200 °C for a duration of 6 h, in air atmosphere.
Individual samples of each phase were also prepared. The
magnetic hysteresis measurements on the samples were carried
out using a hysteresis-graph measurement system.

In order to select appropriate J–A parameters for each
phase, we used the optimization function in [10] and [17].
This function allows the estimation of the values of the J–A
parameters by selecting a suitable range for each parameter.
Table I shows the J–A parameters for two-phase behavior
contributed to the composite magnetic hysteresis by the indi-
vidual phases. A similar procedure was carried out for the
barium hexaferrite-cobalt ferrite composite. Table II shows
the J–A parameters for this composition. With the exception
of the pinning parameter, k, and domain density, a, the J–A
parameters obtained are approximately in the expected range
verified by comparing the values in Tables I and II.

IV. RESULTS AND DISCUSSION

Fig. 2 shows the microstructure of the two-phase material
used in this paper, which comprises of barium hexaferrite
(BaFe12O19), harder phase material, and cobalt manganese
ferrite (CoMn0.1Fe1.9O4), a softer phase. A standard ceramic
sample preparation process was employed for producing these
samples.

Fig. 3 shows three hysteresis plots derived from the
CoMn0.1Fe1.9O4 phase, the BaFe12O19 phase, and a composite
of both phases. It can be seen that the hysteresis loop for
the composite is different from that derived from individual
phases, which indicates magnetic coupling between the two
phases in the composite. In this work, we have attempted to
separate the constituent phases of the two-phase material by
using the J–A model and the five physical model parameters.
We then characterized the hysteresis behavior using MBE
emission profiles.

Fig. 2. Microstructure of the two-phase composite sample. White regions:
barium hexaferrite (left). Dark regions: cobalt manganese ferrite (left).
Microstructure at higher magnification higlighting the two different regions
(right).

Fig. 3. Hysteresis loops for the measured samples for cobalt–manganese
ferrite (CoMn0.1Fe1.9O4) or soft-phase (red-dashed curve). Barium hexafer-
rite (BaFe12O19) or hard phase (magenta-solid curve). Combination of barium
hexaferrite and cobalt–manganese ferrite (black-dotted curve).

The stochastic model of the Barkhausen effect, as formu-
lated in (8), was utilized to observe the Barkhausen noise
profile of the individual phases. For our simulations, we
assumed the initial number of Barkhausen events, Nt , to
be 1000. Fig. 4(a) shows the MBE profile obtained for the
magnetically softer phase (CoMn0.1Fe1.9O4) followed by that
of the magnetically harder phase (BaFe12O19) in Fig. 4(b).
This behavior can be modeled using the relation described in

d MJS,total

dt
= β1

d Mphase1

dt
+ β2

d Mphase2

dt
(9)

where β indicates the volume fraction.
Since addition of the hysteresis components for individual

phases was obtained by linear combination, summation of
the MBE was carried out. This operation results in a MBE
profile with emergence of secondary peaks as seen in Fig. 4(e).
A similar operation was also carried out for the constituent
phases. Fig. 4(c) shows the MBE profile for the softer phase
that was identified using the J–A model. Fig. 4(d) shows the
MBE profile for the harder phase that was identified. The
linear superposition of the MBE profiles, Fig. 4(c) and (d),
leads to Fig. 4(f). In Fig. 4(e) and (f), we observe two
distinct peaks, which indicates the presence of two different
ferromagnetic phases within the material. These observations
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Fig. 4. Barkhausen noise profiles. In each figure, the three voltage bursts
correspond to the initial magnetization, reverse magnetization cycle, and
forward magnetization cycle. (a) BN profile for the soft phase obtained
from measured hysteresis loop using the J–A model parameters. (b) BN
profile for the hard phase obtained from measured hysteresis loop using
the J–A model parameters. (c) BN profile for soft phase in two-phase
material obtained from the hysteresis loop reconstructed using the J–A model
parameters. (d) BN profile for hard phase in two-phase material obtained
from the hysteresis loop reconstructed using the J–A parameters. (e) Linear
superposition of BN (a) and (b). (f) Linear superposition of BN (c) and (d).

lead to the conclusion that the magnetic behavior of two-phase
(or multi-phase) composite materials can be characterized
from the MBE profiles. To do this, the bounds of the J–A
parameters need to be selected appropriately such that the
two phases can be effectively separated out. Similar behavior
has been observed with changes in local strains, hardness,
and composition gradients in ferromagnetic steels [11], [18],
[19]. The peak intensity of the normalized Barkhausen voltage
is related to the volume fraction of each phase. For our
simulations, we assumed that each phase had an equal volume
fraction, i.e., β is equal to 1. Variations in the volume fractions
would lead to the reflection of an enhanced or diminished
response corresponding to the particular phases. We could
further define (9) to include dependence on composition
variations, for example, using a scaling factor, β.

V. CONCLUSION

This paper shows that the J–A theory can be extended to
describe the magnetic behavior of two-phase ferromagnetic
materials. The J–A model has been applied to analyze the
magnetic behavior of the magnetic phases of a two-phase
material. The stochastic-hysteretic model for the Barkhausen

effect allowed us to describe the Barkhausen noise profile for
single-phase and two-phase materials. Two distinct peaks were
observed for composites comprising of different magnetic
phases as used in this work. The model can be utilized as a
tool for non-destructive evaluation of two-phase ferromagnetic
materials for the detection and characterization of constituent
phases.
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